ply= 1) 047
0.8 p(y=1)= 0.73

AL

‘“1 can’t beheve

—

p(y=1)= 0.41
p(y=1)=>0.99
|
' 1 £

p(y=1)= 0.33
1 p(y=1)=>0.99

0

2

4

supervision for latent variable models

is not better:”’

The Case for Prediction Constrained training

Michael C. Hughes

Assistant Professor of Computer Science

foint work with Tufts University
Erik Sudderth, Gabe Hope (UC Irvine)

Madina Abdrakhmanova, Xiaoyin Chen (UC Irvine)
Finale Doshi-Velez & Joe Futoma (Harvard)

slides / papers / code
www.michaelchughes.com




Motivation

Given: dataset 1D with many examples of:

- Features XU Psychiatry application Intensive Care application
- I.abel y x : patient’s health records  x : time-series of vitals
y . successful medication y : need for ventilator
I P
Goals:

* Most important: p(y\at)
— Predict labels from features well at test time
* Also important: p($, y)
— Predict even when missing features
— Train even if only some examples are labeled
— Offer interpretable structure



Latent variable models (LVMs) with supervision

Features

0

Vast literature of
unsupervised LVMs.
Could add supervision

to any of them.
(Many have.)

Hidden
“code”

Label

w

“Shallow” LVMs

* Probabilistic PCA

» Mixture models

» Topic models

» Hidden markov models

* Linear dynamical systems

Prior p(Z)

iranond 00 (7]2)

fﬁfﬁod Pw (y ‘ Z)

“Deep” LVMs

* Variational Autoencoders
 Deep GMMs

* Deep topic models

* Recurrent SLDS

* ... and many more 3



I want to believe ...

Why usc Supervised LVMs? (deep or shallow)

Goals:
* Most important: p(y\a:')

— [ ] Predict labels from features well at test time
* Also important: p(a?, y)
— Predict even when missing features

— Train even 1f only some examples are labeled
— Ofter interpretable structure



I want to believe ...

Why usc SuperViSCd LVMs? (deep or shallow)

Goals:
* Most important: p(y\az)

— [?] Predict labels from features well at test time
* Also important: p(a?, y)
— Predict even when missing features

— Train even 1f only some examples are labeled
— Offer interpretable structure

Key question: are predictions good enough?



... but I can’t believe 1t 1s not better

Claim: Standard ways of supervising LVMs
deliver little added value when predicting labels
given features, especially on real data.

Typically, when all methods have similar capacity,
supervised LVMs are:

- No better than unsupervised baselines.

- Inferior to discriminative methods r iabeled data is abundant)



Latent variable models with supervision

Hidden _
“code” Prior p ( 2 )

Feature
Label likelihood P8 (aj | < )

lIi_IIiEIi}od pw (y‘z)

Features

) w

How to train? Maximize (lower bound of) marginal likelthood
po(a) = [ pael)plz)dz

Joint (Feature+Label)  py ., (x,y) = /pw(y|z)p9(x]z)p(z)dz
marginal likelihood:

Feature
marginal likelihood:



How to train a supervised LVM?

(A) Maximize joint likelihood

max ), 10gpo.u(w,y)
T,y€D



How to train a predictor based on
unsupervised LVM?

(B) Unsupervised-then-predict (2 stage)

1. Train to maximize feature likelithood.

max > logpy(x)

xeD

2. Fit label-from-hidden predictor.

max Y logpu(y|

x,ycD

o (z|z) [Z])



Example 1:
Supervised topic models for count data

Blei & McAuliffe (2010)
Hidden

“code” p(Z) — DlI'(Ol, T 701)
|
|

z) = Mult() , 210k)
z) = Bern(o (), zrwg))

Features

S
U
R\

9 5 B A e W W
- Wbt o

Mm .Jl j tthx

10



Supervised topic models predict poorly
,T ask: Predict ICU Admission from Clinical Notes_(Halpern et al ’12)

0.9
0.85 Linear
0.8 - e.e Csl\ag\s/;ﬁer
L:J t‘g ( ) on words
< 0.75 Unsupervised
=== 1 DA-then-SVM
0.7
0.65 '
0.6 . Unsupervised
0 20 40 60 80 100 SVD-then-5VM

Number of Topics

Compared to methods with similar capacity, supervised LDA is:
- No better than unsupervised-LDA-then-predict
- Inferior to linear classifier of labels given word features .



Example 2:
Supervised Hidden Markov Models

Sticky HMM with autoregressive likelihood
p(z1.7) = p(21) Hfzg p(zt]|zt-1)
po(zrr|zir) = [T N (@] AL 2021, 5,)
Pw(ylz1:7) = Bern(ylo(w.))

Task: Predicting need for short-term intervention in ICU from vital sign time series

2 X
= 3¢ \
= -8 \ e
- t - e
1.0 -
05 -
e« 90 | : :
R -— - - I W111.patler'1t need
- - —— ventilator in one hour?
O

Sp02

- “A\‘ Fed

Features x: Time series of 7 vitals and 11 labs 12

||
WN -

|



Supervised HMMs predict poorly

Task: Predicting need for short-term intervention from vital time series
16492 sequences from Boston-area ICU (MIMIC III dataset)

0.90 -
. —e— Recurrent Neural Net
0.85
O
= 0.80-
f 0.75- Supervised HMM
g _ —®— Unsupervised HMM-
+— 0.70 .
then-predict
0.65

005 02 05 1.0
frac. sequences labeled

When labels are abundant, compared to methods with similar capacity,
supervised HMMs tend to be:
- No better than unsupervised-then-predict

- Inferior to discriminators 13



Semi-supervised HMMs predict poorly

Task: Predicting need for short-term intervention from vital time series
Labeled set: 5%, 10% , 20%, and 50% of 16492 sequences.

0.90 - Labeled set only

0.85- —®— Recurrent Neural Net
o e S
= 0.801 Labeled set + Unlabeled set
f 0.75- Supervised HMM
§ 0.70- —®— Unsupervised HMM-
' then-predict
0.65

005 02 05 1.0
frac. sequences labeled

When labels are rare, compared to methods with similar capacity,
supervised HMMs tend to be:
- No better than unsupervised-then-predict

- Superior to labeled-set-only discriminators 14



(Goals of this Talk

Show that existing supervised LVM training
objectives add little predictive value when
model 1s misspecified.

Propose new training objective — prediction-
constrained (PC) training — that can deliver
better label-from-feature predictions despite
misspecification.

15



count

Toy Data Experiment

10 |
L
Goal: How do supervised LVM training

objectives balance two goals in tension:

generative VS. discriminative
16



Supervised Gaussian Mixture Model

Hidden Assume K possible clusters
“code”

zn ~ Discrete(my, ... 7g)

Features Label

Tn|2n=k ~ Normal(uy, o})

Yn|zn=Fk ~ Bern(wy)

17



Supervised Gaussian Mixture Model

Hidden
“code”

Features

) w

Manual GMM K=2

“good feature likelithood”

Error 0.40

p(y=1)= 0.47
0.8 p(y=1)= 0.73

0.6 -
0.4 -
0.2 -
0.0-

Label

“good label prediction”

Assume K possible clusters

zn ~ Discrete(my, ... 7g)
_ 2

Tn|2n=Fk ~ Normal(ug, o})

Yn|zn=Fk ~ Bern(wy)

Manual GMM K=4
“good label prediction”

Manual GMM K=2

Error 0.28 Error 0.14
p(y=1)= 0.33 p(y=1)= 0.10
1 p(y=1)=>0.99 . p(y=1)= 0.31
p( '}"':T )=>0.99
p(y=1)=>0.99

LAGDN Al

13



Supervision via joint likelithood fails

Unsupervised-then-predict Supervised training
Best GMM with K=2 Best GMM with K=2
Error 0.40 Error 0.40
p(y=1)= 0.49 p(y=1)= 0.47
p(y=1)= 0.70 p(y=1)= 0.73
4 2 0 2 4 4 2 0 2 4
X X

Why doesn’t supervision help? Misspecification.
Forced to compromise p(y | X) to make p(x) look good.

If my goal prioritizes prediction using p(y | x),
maximizing joint likelihood p(x,y) may yield poor results

19



Explaining failure of joint likelihood

Unsupervised LVM Supervised LVM
100s of words 100s of words 1 binary label
or 100s of vitals or 100s of vitals

max  10g pg,w (<, y)

0,w

Supervised training objective treats x and y as interchangeable.
Claim: the likelihood of x dominates (due to 1its larger size).

Not too surprising learned models are indistinguishable.

20



Attempted fix from past work:

Label Replication

R copies
of Label

max log pg.w (T, v, Y, ... y)

0,w

Proposed separately 1n several past studies:

* Vendatam, ..., & Murphy (ICLR 2018) : “Joint VAEs” for images + attributes
* Zhang & Kjellstrom (2014) : “Power sLDA” for supervised topic models

We can show other objectives are equivalent (once framed as point estimation)
 Med-LDA by Zhu et al. (2012)

21



Label Replication fails

Supervised GMM with Label Replication

R=2 copies of each label

R=4 copies of each label R=16 copies of each label
Error 0.32 Error 0.32 Error 0.32
| P(y=1)=<0.01 p(y=1)=<0.01 p(y=1)=<0.01
p(y=1)=>0.99 1 p(y=1)=>0.99 1 p(y=1)=>0.99

Why?
- During training, driven by the many observed copies of y
- But at test time, unable to perform label from feature prediction

22



Why does Label Replication fail?

Goals:
* Most important: p(y|:1:)

- [?] Predict labels from features well at test time

Recall:

Does Label Replication objective prioritize y from x?

No. Rewriting via chain rule suggests no specific emphasis.
y from x

p(x7 y? y) — p(y7 y‘x)p(x) is one interpretation
= p(@ly, y)p(y, v)

Replication does not emphasize our top priority: y from x
23



Proposed solution:
Prediction Constrained (“PC”) training

Ideal version: Constrained optimization problem

Goal: “Find the best model for x that
predicts y from x at desired quality”

max ), .p logpg(r)
subject to: ). cp logpgw(ylr) > €

€ is a threshold chosen by stakeholder

24



Proposed solution:
Prediction Constrained (“PC”) training

Practical version: Unconstrained optimization (via Lagrange multiplier theory)
max D veD, log pe(x )}+ Alog po,w(ylz)
Y |

good generative good predictions
model of features  of labels from features

Prediction Constrained (“PC”) training

A > 1 emphasize models that predict y from x

A = 1 equivalent to standard supervision
(maximizing joint likelthood)
25



PC can overcome misspecification

Equivalent _ Stronger
to max joint likelihood constraint
A=1.0 A=4.0 A=16.0
Error 0.40 Error 0.28 Error 0.28
p(y=1)= 0.47 p(y=1)= 0.41 p(y=1)= 0.33
0.87 p(y=1)= 0.73 1 p(y=1)=>0.99 1 p(y=1)=>0.99
0.6 1 . i
0.4 1 g .
0.2 - - i
00 - T T T T T T T
-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2
X X X

Related work on learning that overcomes misspecification
Generalized Bayes : Bissiri, Holmes, & Walker (2016) ‘“Safe Bayesian” : P. Griinwald (2012)
Power posteriors : Miller and Dunson (JASA 2019)

26



PC can overcome misspecification

Equivalent _ Stronger
to max joint likelihood constraint
A=1.0 A=4.0 A=16.0
Error 0.40 Error 0.28 Error 0.28
0.47 p(y=1)= 0.41 p(y=1)= 0.33
0.8 - 0.73 1 p(y=1)=>0.99 1 p(y=1)=>0.99
0.6 -
0.4 -
00 - T T T T T 1
0 0 0
X X X
A=1.0 A=40 A=16.0
Error 0.19 Error 0.15 Error 0.14
p(y= p(y= p(
0.81 p(y= p(y=
p(y= p(y=
0.6 p(y= p(y=
0.4 =
e / \1
0.0 T : k
0 2 4 0 2 0 2
X X X

PC shows benefits even as capacity grows (more clusters)



PC 1s distinct from Replication

PC upweights entire y from x marginal likelihood
A
p()p(y|z) /\
= 5(0) ([ pululoIpotclo)a:
4

Replication upweights only y from z term

p(z,y...y)
N——
R

_ / Pu(yl2) Fps(2]2)p(2)dz

28



PC HMDMs deliver better predictions

Task: Predicting need for short-term intervention from vital time series
16492 sequences from Boston-area ICU (MIMIC III dataset)

0.90+ Labeled set only
0.85- '// ’ —®— Recurrent Neural Net
Q ~— PC HMM
> 0.801 ——
?:_, 0.75- Supervised HMM
§ 0.70- —®— Unsupervised HMM-
' then-predict
0.65

005 02 05 1.0
frac. sequences labeled

- Better than unsupervised-then-predict
- Superior to labeled-set-only discriminators when labels are rare
- Competitive with labeled-set-only discriminators when labels abundant

29



Semi-Supervised VAES
K23

? 0 4 VAE-then-MLP  Supervised VAE

Task: Predict 10-class 57 | same oo . ..t .
digit label given Recct AT R

. ] "‘.' S T : 2 D " o D > : ¢
MNIST image SR ocpos o L1 S T v O

via VAE

Code size: |z| =2 .
“54.9% accuracy 66.2%." +

100 labeled

49900 unlabeled Kingma & Welling 14 M2

30



PC improves Semi-Supervised VAEs

A 2. a Hope, Abdrakhmanova, Chen, Hughes, Sudderth (in preparation)
9 0 4 VAE-then-MLP  Supervised VAE

Task: Predict 10-class 57 | same oo . 6.t .
digit label given RIS st .

. ] R ! \ ; ‘\" . 0 Ll " . ° l & : g
MNIST image TN o o SR Fh v

via VAE

Code size: |z| =2

+154.9% accuracy
100 labeled oo

49900 unlabeled e M2




PC improves Supervised VAES

Hope, Abdrakhmanova, Chen, Hughes, Sudderth (in preparation)
r
Task: Predict class label given image. ?, : <
1000 Iabeled. 20,000+ unlabeled
VAE encoding size 50 (bigger than last slide) . ,
Method SVHN (1000) NORB (1000)
Semi-supervised Kingma & Welling ‘14 M1 + M2 63.98% (£0.10) -
LVM Methods Maaloe et al ‘16 ADGM 77.14% 89.94% (i0.05)
Maaloe et al ‘16 SDGM 83.39% (£+0.24) 90.60% (£0.04)
CPC VAE 94.22% (+0.62) 92.00% (+1.21)
Seml_suPeersed Miyato et al ‘19 VAT 94-23%1 (:}:0.32) -

Discriminative CNN

Labeled-set only

PC-VAEs are
- Superior to labeled-set-only discriminators
- Competitive with state-of-the-art SSL deep learning (discrim. only) 32



PC training for Model-based RL

Futoma, Hughes, and Doshi-Velez (AISTATS 2020)

Learning to treat high blood pressure LVM: POMDP as Input-output HMM

Retrospective data ONLY!

Action

Expert Clinician

Environment

V'
=

max logpg(x) + AV (7p)

0 Generative likelihood of Value of inferred policy
the observed features under the generative model
Result: Improved policy value on ICU data Result: Useful forecasts from model
Hypotension Results 5 Forecasting Results, map
) Value term only (ESS: 79+5) % 07 I 103_; .." 0’.0‘0
¢ POPCORN A=.316 (ESS: 87+4) Z 604 ¢ . g *
POPCORN A=.031 (ESS: 78+3) 5 2 .024¢
POPCORN A=.003 (ESS: 77+3) 8 50- ¢ < G
4 2-stage (EM then PBVI) (ESS: 52+2) 3 S 1]
—— Behavior policy value ® 4014 T T g 103 "..?.‘..?..
3 2 - 0 5 10
log likelihood of data Forecast Horizon (1-12 hours ahead) 33



[essons LL.earned

Need to spend more time choosing our objectives

Always debug on simple examples

+ Separate bad algorithm from bad objective

+ Need to work very hard to avoid poor local optima
We show best of 20 runs even for K=2 GMM

Tuning hyperparameters so important
+ Limitation of PC approach: Grid search for lambda

34



Summary: The Case for Prediction Constrained Training

Existing training objectives add little predictive value when the model 1s misspecified.

New training objective — prediction-constrained (PC) training — can deliver better
label-from-feature predictions despite misspecification.

PC training delivers all goals

¢ Most important: p(y[:z: )
— h{{Predict labels from features well at test time

« Also important: p(;lj7 y)
— Predict even when missing features
— Train even if only some examples are labeled

— &/Offer interpretable structure

Publications
PC for semi-supervised topic models PC for semi-supervised VAEs
Hughes et al. AISTATS 2018 Hope et al. in preparation

Application to recommending antidepressants PC for POMDPs

Hughes et al. JAMA Network Open 2020 Futoma et al. AISTATS 2018 -



