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Hughes Lab @ Tufts CS

Area: statistical machine learning; clinical informatics
Lab goal: Reliable training of interpretable models for real-world decisions

0330 0999 New Training Goal: “Prediction-Constrained”’
Avoids Model Misspecification for Decision Task via (Rare) Labels

* Semi-supervised topic models Hughes et al. AISTATS 2018

* End-to-end training of POMDPs Futoma, Hughes, et al. AISTATS 2020
for reinforcement learning

New Variational Algorithm: Scalable yet Reliable
Adapt Model Size to Data (Bayesian Nonparametrics)

» Add clusters during training Hughes & Sudderth NeurIPS 2013

« Topic models for news articles Hughes, Kim & Sudderth AISTATS 2015
«  HMMs for mocap and genomics Hughes et al., NeurIPS 2015

» Image composition models Ji, Hughes, & Sudderth ICML 2017

« Speed-up model comparison Zhang & Hughes, AABI 2019
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New Training Objectives for Deep Neural Nets
] l Optimize for interpretability, don’t just interpret afterwards
*  Find diverse explanations Ross,, Hughes, Doshi-Velez 1JCAI 2017

e Find tree-like neural nets Wu, Hughes, Parbhoo, et al. AAAI 2018
Wu, Parbhoo, Hughes et al. AAAI 2020

BNP Statistical Models : github.com/bnpy/bnpy
Time-series Prediction: github.com/tufts-ml/time series predict



Hughes Lab @ Tufts CS

Area: statistical machine learning; clinical informatics
Lab goal: Reliable training of interpretable models for real-world decisions

Personalize treatments for major depression

* Discover subtypes and best Hughes et al. AISTATS 2018

treatments with topic models Hughes et al. in submission to JAMA Open
Drs. McCoy and R. Perlis (MGH/Harvard)

Personalize treatments in the Intensive Care Unit

* Suggest interventions Ghassemi et al. AMIA CRI 2017

* Address non-stationarity features Nestor et al. MLHC 2019
Drs. R. Kindle and L. Celi (Beth Israel)

Predict mortality from chemotherapy for leukemia

« Balance costs to decide who Siddiqui et al. Amer. Soc. Hematology 2019
gets high-risk treatment Drs. N. Siddiqui, A. Klein, et al. (Tufts Med.)

Detect heart disease from few labeled images
In progress, Dr. Ben Wessler (Tufts Med.)

¥ipF§® Predict individual treatment effects from drug trials
'i“i“i"i"i‘ In progress, Dr. David Kent (Tufts Med.)
ICU Time-series Benchmarks: github.com/MLforHealth/MIMIC Extract



Roadmap

Motivation: Improve interventions in ICU
Models for Clustering Structured Data

Method: Prediction-Constrained Training
Hughes et al. AISTATS 2018

Prediction-Constrained HMMs

Hope, Hughes, Sudderth, et al. In Progress

Prediction-Constrained POMDPs

Futoma, Hughes, Doshi-Velez AISTATS 2020



Problem: When will ICU patient
need intervention?

Ghassemi, Wu, Hughes, et al. AMIA CRI 2017

Interventions:

Ventilators to
assist breathing

Drugs to manage
blood pressure

Early prediction helps:
prepare patient
plan staffing
try less aggressive options early




Data: ~30,000 ICU patients

mimic.physionet.org
(Johnson et al. Sci. Data 2016)

Nurse-validated vital signs (1irregular, hourly)

heart rate, blood pressure, temp., SpO2, ...

Lab measurements (irregular, every few hours)
hematocrit, lactate, ...
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Key Goals for our Model

* How should we deal with missing data values?
— We cannot draw blood every hour

 How to deal with missing labels?
— Most patients never get some treatments of interest

* Punchline:
Model 1s always wrong... Is it sometimes useful?

Can we adjust fitting procedure to make more useful?



Approach:
Model data and labels with
a joint probabilistic graphical model

data labels

p(z,y) = p(y|z)p(x)

Why a joint model?
* p(x) can help us reason about missing data
* p(y | xX) can help us predict labels from data
« even if some labels are missing from training set
« Tying these together makes
« All parts work in unison
« Simplifies training: solve one problem, not several disconnected pieces
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Structured Clustering Models

Hidden

Mixture Topic Models Markov
Models Models

Writing Zombies Hilarious

Dialogue @ | Suspense Fun

Oscar || Horror || Comedy wm
Thrilling Monster Laughs 1
Screenplay =~ Dead | Low-brow | _ M‘W
Characters = Violence Ferrell MMHW



Simple case: Gaussian Mixture

Obs. —> cluster

@ assignments
cluster frequency 7 ] ] . I /
cluster shape ¢

¢k — {,uka 0-126}

obs.-to-cluster assignment Zn N Discrete(w 1y...7T0 K)
observed data ZIZ‘n|Zn:]€ ~J Normal(,uk, 0'13)
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/.. Per-Example Membership

Mixture
Models
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Phi: Cluster Emission Parameters

M Hidden

Ixture Topic Models Markov

Models @ Models
Observation

@ Observation distributions
7'ibutions @

(Generic data) (Grouped data) (Sequence data)
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P1: Cluster Appearance Frequency
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How should we add supervision?

M Hidden
Ixture Topic Models Markov
Models @ Models
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Supervised clustering models

Predict labels as a function of the cluster
membership:

i Hidden
Mixture _ ooy
Models Topic Models arkov

@ Models
(@)
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¢
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K D

Directly modeling a label likelihood p(y | z) makes it easy when y is missing
Class conditional models like p(z | y) would require expensive marginalization |5



Simple Challenge:
Model this Data!
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Supervised Gaussian Mixture Model

Assume K possible clusters

®

2, ~ Discrete(my, ... Tx)

2 Tn|2n=Fk ~ Normal(jiy, o})

W @) Yn|zn=Fk ~ Bern(wy)
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Supervised Gaussian Mixture Model

@

Yn

N

—

w @K

K=2

Assume K possible clusters

zn ~ Discrete(my, ... Tx)
Tn|zn=Fk ~ Normal(uy, o7 )

Un|zn=Fk ~ Bern(wy)

w b=0.4 w r=0.5
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Haven’t we known how to fit these
models for >30 years?

7T7¢7w

N
max 3" logp(zn, yalr. &,
n—=1

Result:

Terrible label prediction!

Forced to compromise p(y | X)
to make p(x) look good

If my application need prioritizes p(y | Xx), maximizing

joint likelthood may not yield useful results
19



Past Work Attempted Fix:
Label Replication

Supervise + Replicate

max logp(z,y,y,...y/¢,w)
b

/\
@

R copies

Proposed by

 Zhang & Kjellstrom (2014) as “Power sLDA”
« Zhuetal. (2012) as “Med-LDA”
* Ganchev et al. (2010) as ”Posterior Regularization”
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No known _alternative§ work well

Unsupervised model

®

Ln

N

K

ma¢x p(x|z, )

Joint model

max p(x, y |z, ¢, w)
QW

[log p(x,|z,)| > > |logp(y,|z,)|

Label replication

®

Yn) I
N

max p(x, fy |z, ¢, w)
T.p.w

Equiv. to

PO, 2W) = P, | 2 WY

AN
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Prediction-Constrained Training

Key idea: Maximize likelihood of observations...

max log p(x| 7, ¢)
T,

Subject to: —logp(y|x, 7, ¢p,w) <€

Subject to a constraint that we can achieve a given
performance threshold for predicting labels given observations

How to compute? K

P(Ynln, ™, ¢, w) = p(Yns 20 = k|, 7, ¢, w)



How to optimize?

max Alog p(y|x, ¢, n) + log p(z|¢)

®,M

Use Lagrange multiplier to form unconstrained objective
Optimize via stochastic gradient descent

* Write objective as Python code
* Automatic gradients from Tensorflow/Pytorch

N

i
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PC can overcome misspecification

Weak Stronger
constraint constraint
A=1.0 A=4.0 A=16.0 A=64.0
08 0.468 0.541 0.344 >0.999 0.330 >0.999 . 0.321 >0.999
Prediction '
Constrained
with Lagrange \ m
multiplier A
0.0
-2 0 2 -2 0 2 -2 0 2
% 04 7 ® o
= 0.3
— 2 | —— —0
2 0. —e— PC
o 82) | —e— MaxLik+Replicate
. |O |2 |4 |6
2 2 2 2
A
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Roadmap

Motivation: Improve interventions in ICU
Model Family for Clustering Structured Data
Method: Prediction-Constrained Training
Prediction-Constrained HMMs

Hope, Hughes, Sudderth (in progress)
Prediction-Constrained POMDPs



Prediction Constrained
Hidden Markov Models
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Probabilistic time-series model
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Probabilistic time-series model

Hidden Patient State Zt

one of K possible values

Observed Feature Vector /[ t
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Goal: Health States Trajectories

Ghassemi, Wu, Hughes, et al AMIA CRI 17

ICU signals from many patients Health state trajectories

Improving kidney Steady-state
function kidney function
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p(x,z) : Autoregressive HMM

Hidden
Patient State

Observed Vitals

ﬁ\\,

N
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e
zt|z1—1 = j ~ Discrete(m1, ... Tk )
Ti|ze = k ~ N(Agxi—1 + pi, 2k)
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p(y|z,x) : Binary Label Prediction

Use data <= hour t Predict

p(yt+g\21:t,$1:t) 7

yt -+ (g binary need

g hours ahead
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p(y|z,x) : Binary Label Prediction

Use data <= hour t

ul
O <t

Lt

Predict

yt -+ (g binary need

g hours ahead

Summary statistic:
“belief up to time ¢’
bt — [bth bt27 ¢ o btK]

gAY

Dt "3[Zt:k\$1:t]
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Example HMM

0.5

Data generation of
500 sequences

Each sequence gets
binary label

1 if above x-axis
0 if below x-axis
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F1it with 100% sequences labeled

EM Result (48.6% held-out accuracy):
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ICU Need for Ventilator Prediction

Using autoregressive HMM with 10 states

num. states = 10

0.90- )
0.85- —e— RNN
S 0.80- —e— PCHMM
< 0.75- sHMM (max. joint lik.)
n :
@ 0.70- —eo— HMM (max. data lik.)
0.65-

005 02 05 1.0
frac. sequences labeled

* PC 1s strictly better than maximum likelihood training
* When labels are rare, PC > deep learning on labels only
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Roadmap

Motivation: Improve interventions in ICU
Model Family for Clustering Structured Data
Method: Prediction-Constrained Training
Prediction-Constrained HMMs

Prediction-Constrained POMDPs
Futoma, Hughes, Doshi-Velez AISTATS 2020
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RL FORACUTE HYPOTENSION

|K - High morbidity & mortality
..“rrz'TE\" +  Heterogeneous: many causes
H +  Treatment not standardized

Action

Reward
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RL FORACUTE HYPOTENSION

Retrospective data ONLY!

Environment

Expert Clinician
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What 1s needed for Clinical RL

* Learn from retrospective histories only
— Called “batch” setting of RL

 Use model-based RL

— Can deal with little data and missing data
— Can do forecasting and simulation

* Handle unknown state space
— “POMDP”: partially observed Markov decision process

Need: to avoid misspecification and get high reward

40



Actions: fluid & vaso at each hour

o g0 )/ﬁ\

M m & Unobserved
- » responses
-

% and response
1

/ e >

Fluid bolus?

Vasopressor?
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POMDP as structured clustering model:
Input/Output-HMM

S88 Bk
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Estimating Value
from Off Policy Data

t

pnt(ﬂ'e) Py H 7-‘-49(0'715|On,0:saaf'n,,O:s—l) .

=0 Theh (ans |0n,0:s, an,ozs_l)

Consistency Weighted Per-decision Importance Sampling
(CWPDIS, Thomas 2015)
Lower bias but high variance
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Prediction Constrained POMDPs

maxy ﬁgen(é’) —+- )\V(’]TQ)

Generative likelihood of the Value of policy
observations given the model Given the model

We call our method “POPCORN"’:
Partially Observed Prediction Constrained
ReiNforcment Learning
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Results: PC-POMDP best for reaching
sweet spot of value and likelithood

< @

Hypotension Results

o 70-
Value term only (ESS: 7915) c_:;
POPCORN A=.316 (ESS: 87x4) > 60 -4 ¢ .
POPCORN A=.031 (ESS: 78+3) 9
POPCORN A=.003 (ESS: 77+3) 8 50 - ¢’
2-stage (EM then PBVI) (ESS: 52+2) g
—— Behavior policy value 40 — | |
-3 —2 -1

log likelihood of data
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Can use model for forecasting!

= Forecasting Results, map
. = $: T ;¢

null model (predict mean) T .‘ ’. $440
2-stage (EM then PBVI) =
POPCORN A=.003 2 024!
POPCORN A=.031 <
POPCORN A=.316 =

10 1000000000049
Value term only S (') é 1'0

Forecast Horizon (1-12 hours ahead)
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Future: PC training for rich family of
deep generative models
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Mixture models

Topic models

Hidden Markov models
Network models (MMSB)

PCA or factor analysis
Non-negative matrix factorization

Probabilistic encoder/decoder (VAE)

* Models of many data sources

Social Media

Patient Records

Home Monitoring

Gene Sequencing

Mobile Apps
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