Overcoming Misspecification with Prediction Constrained Probabilistic Models

Assistant Professor of Computer Science, Tufts University

joint work with
Finale Doshi-Velez & Joe Futoma (Harvard)
Erik Sudderth & Gabe Hope (UC Irvine)

slides / papers / code www.michaelchughes.com

Hughes Lab @ Tufts CS

Area: statistical machine learning; clinical informatics

Lab goal: Reliable training of interpretable models for real-world decisions

New Training Goal: "Prediction-Constrained"

Avoids Model Misspecification for Decision Task via (Rare) Labels

- Semi-supervised topic models
- End-to-end training of POMDPs for reinforcement learning

Hughes et al. AISTATS 2018

Futoma, Hughes, et al. AISTATS 2020

New Variational Algorithm: Scalable yet Reliable

Adapt Model Size to Data (Bayesian Nonparametrics)

- Add clusters during training
- Topic models for news articles
- HMMs for mocap and genomics
- Image composition models
- Speed-up model comparison

Hughes & Sudderth NeurIPS 2013

Hughes, Kim & Sudderth AISTATS 2015

Hughes et al., NeurIPS 2015

Ji, **Hughes**, & Sudderth ICML 2017

Zhang & Hughes, AABI 2019

New Training Objectives for Deep Neural Nets

Optimize for interpretability, don't just interpret afterwards

• Find diverse explanations

• Find tree-like neural nets

Ross,, **Hughes**, Doshi-Velez IJCAI 2017 Wu, **Hughes**, Parbhoo, et al. AAAI 2018

Wu, Parbhoo, **Hughes** et al. AAAI 2020

BNP Statistical Models: github.com/bnpy/bnpy

Time-series Prediction: github.com/tufts-ml/time_series_predict

Hughes Lab @ Tufts CS

Area: statistical machine learning; clinical informatics

Lab goal: Reliable training of interpretable models for real-world decisions

Personalize treatments for major depression

• Discover subtypes and best treatments with topic models

Hughes et al. AISTATS 2018

Hughes et al. in submission to JAMA Open

Drs. McCoy and R. Perlis (MGH/Harvard)

Personalize treatments in the Intensive Care Unit

• Suggest interventions *G*

Ghassemi et al. AMIA CRI 2017

• Address non-stationarity features *Nestor et al. MLHC 2019*

Drs. R. Kindle and L. Celi (Beth Israel)

Predict mortality from chemotherapy for leukemia

 Balance costs to decide who gets high-risk treatment Siddiqui et al. Amer. Soc. Hematology 2019 Drs. N. Siddiqui, A. Klein, et al. (Tufts Med.)

Detect heart disease from few labeled images

In progress, Dr. Ben Wessler (Tufts Med.)

Predict individual treatment effects from drug trials

In progress, Dr. David Kent (Tufts Med.)

ICU Time-series Benchmarks: github.com/MLforHealth/MIMIC_Extract

Roadmap

- Motivation: Improve interventions in ICU
- Models for Clustering Structured Data
- Method: Prediction-Constrained Training *Hughes et al. AISTATS 2018*
- Prediction-Constrained HMMs

 Hope, Hughes, Sudderth, et al. In Progress
- Prediction-Constrained POMDPs

Futoma, **Hughes**, Doshi-Velez AISTATS 2020

Problem: When will ICU patient need intervention?

Ghassemi, Wu, Hughes, et al. AMIA CRI 2017

Interventions:

- Ventilators to assist breathing
- Drugs to manage blood pressure

Early prediction helps: prepare patient plan staffing

try less aggressive options early

Data: ~30,000 ICU patients

mimic.physionet.org
(Johnson et al. Sci. Data 2016)

Nurse-validated vital signs (irregular, hourly) heart rate, blood pressure, temp., SpO2, ...

Lab measurements (irregular, every few hours) hematocrit, lactate, ...

Key Goals for our Model

- How should we deal with missing data values?
 - We cannot draw blood every hour
- How to deal with missing labels?
 - Most patients never get some treatments of interest

• Punchline:

Model is always wrong... Is it sometimes useful?

Can we adjust fitting procedure to make more useful?

Approach:

Model data and labels with a joint probabilistic graphical model

$$p(x,y) = p(y|x)p(x)$$

Why a joint model?

- p(x) can help us reason about missing data
- $p(y \mid x)$ can help us predict labels from data
 - even if some labels are missing from training set
- Tying these together makes
 - All parts work in unison
 - Simplifies training: solve one problem, not several disconnected pieces

Structured Clustering Models

Mixture Models

Topic Models

Hidden Markov Models

Simple case: Gaussian Mixture

obs.-to-cluster assignment $z_n \sim \mathrm{Discrete}(\pi_1, \dots \pi_K)$ observed data $x_n | z_n = k \sim \mathrm{Normal}(\mu_k, \sigma_k^2)$

Z: Per-Example Membership

Phi: Cluster Emission Parameters

Pi: Cluster Appearance Frequency

How should we add supervision?

Supervised clustering models

Predict labels as a function of the cluster membership:

Directly modeling a label likelihood $p(y \mid z)$ makes it easy when y is missing Class conditional models like $p(z \mid y)$ would require expensive marginalization

Simple Challenge: Model this Data!

Supervised Gaussian Mixture Model

Assume K possible clusters

$$z_n \sim \text{Discrete}(\pi_1, \dots \pi_K)$$

 $x_n | z_n = k \sim \text{Normal}(\mu_k, \sigma_k^2)$
 $y_n | z_n = k \sim \text{Bern}(w_k)$

Supervised Gaussian Mixture Model

Assume K possible clusters

$$z_n \sim \text{Discrete}(\pi_1, \dots \pi_K)$$
 $x_n | z_n = k \sim \text{Normal}(\mu_k, \sigma_k^2)$
 $y_n | z_n = k \sim \text{Bern}(w_k)$

V=0

y=1

Haven't we known how to fit these models for >30 years?

$$\max_{\pi,\phi,w} \sum_{n=1}^{N} \log p(x_n, y_n | \pi, \phi, w)$$

Result:

Terrible label prediction!

Forced to compromise p(y|x) to make p(x) look good

If my application need prioritizes p(y|x), maximizing joint likelihood may not yield useful results

Past Work Attempted Fix: Label Replication

 $\max_{\phi,w} \log p(x, y, y, \dots y | \phi, w)$

Proposed by

- Zhang & Kjellstrom (2014) as "Power sLDA"
- Zhu et al. (2012) as "Med-LDA"
- Ganchev et al. (2010) as "Posterior Regularization"

Hughes et al. AISTATS 2018 contribution: Show many previous efforts equivalent to this basic idea.

No known alternatives work well

Unsupervised model

 $\max_{\pi,\phi} p(x \,|\, \pi,\phi)$

Joint model

 $\max_{\pi,\phi,w} p(x,y \mid \pi,\phi,w)$

 $|\log p(x_n|z_n)| >> |\log p(y_n|z_n)|$

Label replication

 $\max_{\pi,\phi,w} p(x,\beta y \mid \pi,\phi,w)$

Equiv. to

 $p(y_n | z_n, w) \rightarrow p(y_n | z_n, w)^{\beta}$

Prediction-Constrained Training

Key idea: Maximize likelihood of observations...

$$\max_{\pi,\phi} \log p(x \mid \pi, \phi)$$

Subject to: $-\log p(y | x, \pi, \phi, w) < \epsilon$

Subject to a *constraint* that we can achieve a given performance threshold for predicting labels *given observations*

How to compute?
$$p(y_n|x_n,\pi,\phi,w) = \sum_{k=1}^K p(y_n,z_n=k|x_n,\pi,\phi,w)$$

How to optimize?

$$\max_{\phi,\eta} \lambda \log p(y|x,\phi,\eta) + \log p(x|\phi)$$

Use Lagrange multiplier to form unconstrained objective

Optimize via stochastic gradient descent

- Write objective as Python code
- Automatic gradients from Tensorflow/Pytorch

PC can overcome misspecification

$$\lambda = 1.0$$

$$\lambda = 4.0$$

$$\lambda = 16.0$$

Stronger constraint

$$\lambda = 64.0$$

Roadmap

- Motivation: Improve interventions in ICU
- Model Family for Clustering Structured Data
- Method: Prediction-Constrained Training
- Prediction-Constrained HMMs

Hope, Hughes, Sudderth (in progress)

Prediction-Constrained POMDPs

Prediction Constrained Hidden Markov Models

Probabilistic time-series model

Probabilistic time-series model

Goal: Health States Trajectories

Ghassemi, Wu, Hughes, et al AMIA CRI '17

ICU signals from many patients

Health state trajectories

p(x,z): Autoregressive HMM

Hidden **Patient State Observed Vitals**

$$z_t | z_{t-1} = j \sim \text{Discrete}(\pi_{j1}, \dots \pi_{jK})$$
$$x_t | z_t = k \sim \mathcal{N}(A_k x_{t-1} + \mu_k, \Sigma_k)$$

p(y|z,x): Binary Label Prediction

p(y|z,x): Binary Label Prediction

Example HMM

Data generation of 500 sequences

Fit with 100% sequences labeled

ICU Need for Ventilator Prediction

Using autoregressive HMM with 10 states

- PC is strictly better than maximum likelihood training
- When labels are rare, PC > deep learning on labels only

Roadmap

- Motivation: Improve interventions in ICU
- Model Family for Clustering Structured Data
- Method: Prediction-Constrained Training
- Prediction-Constrained HMMs
- Prediction-Constrained POMDPs

Futoma, Hughes, Doshi-Velez AISTATS 2020

RL IN GENERAL...

RL FOR ACUTE HYPOTENSION

RL FOR ACUTE HYPOTENSION

Retrospective data ONLY!

What is needed for Clinical RL

- Learn from retrospective histories only
 - Called "batch" setting of RL
- Use model-based RL
 - Can deal with little data and missing data
 - Can do forecasting and simulation
- Handle unknown state space
 - "POMDP": partially observed Markov decision process

Need: to avoid misspecification and get high reward

Actions: fluid & vaso at each hour

POMDP as structured clustering model: Input/Output-HMM

Estimating Value from Off Policy Data

$$V^{\text{CWPDIS}}(\pi_{\theta}) \triangleq \sum_{t=1}^{T} \gamma^{t} \frac{\sum_{n \in \mathcal{D}} r_{nt} \rho_{nt}(\pi_{\theta})}{\sum_{n \in \mathcal{D}} \rho_{nt}(\pi_{\theta})},$$
$$\rho_{nt}(\pi_{\theta}) \triangleq \prod_{s=0}^{t} \frac{\pi_{\theta}(a_{ns} | o_{n,0:s}, a_{n,0:s-1})}{\pi_{\text{beh}}(a_{ns} | o_{n,0:s}, a_{n,0:s-1})}.$$

Consistency Weighted Per-decision Importance Sampling (CWPDIS, Thomas 2015)
Lower bias but high variance

Prediction Constrained POMDPs

$$\max_{\theta} \mathcal{L}_{gen}(\theta) + \lambda V(\pi_{\theta})$$

Generative likelihood of the observations given the model

Value of policy Given the model

We call our method "POPCORN":
Partially Observed Prediction Constrained
ReiNforcment Learning

Results: PC-POMDP best for reaching sweet spot of value and likelihood

Can use model for forecasting!

- null model (predict mean)
- 2-stage (EM then PBVI)
- POPCORN λ =.003
- POPCORN λ=.031
- POPCORN λ =.316
- Value term only

Forecast Horizon (1-12 hours ahead)

Future: PC training for rich family of deep generative models

- Mixture models
- Topic models
- Hidden Markov models
- Network models (MMSB)

- PCA or factor analysis
- Non-negative matrix factorization
- Probabilistic encoder/decoder (VAE)

 Disease progression over time

Models of many data sources

