Predicting intervention onset in the ICU with switching state space models

Michael C. Hughes, Peter Szolovits, and Finale Doshi-Velez

MIT, Yale University, and Harvard University

Problem: When will ICU patient need *intervention*?

e.g.

mechanical ventilation

vasopressor (blood pressure drug)

or fluid transfusion

Early prediction helps:

prepare patient

plan staffing

try less aggressive on

try less aggressive options early

Possible Approaches

What to predict?

- lots of work on general risk scores
 - mortality, SAPS, APACHE
- less work on actionable interventions

How to represent patient state?

hand-engineered features

continuous-state temporal models

discrete switching-state temporal models

Lehman et al. 2015 Caballero Barajas et al. 2014

Contribution

We show that an

unsupervised auto-regressive Markov model trained on

large cohort of 36,000 patients can improve predictions for

5 interventions several hours ahead

mechanical ventilation vasopressor

red blood cell transfusion plasma transfusion platelet transfusion

Cohort from MIMIC-III dataset

mimic.physionet.org
(Johnson et al. Sci. Data 2016)

36,050 patients

recorded at Beth-Israel Deaconess in Boston between 2001-2012

kept all adults with record within 6-360 hours

Intervention	Training Num Positive	Training Num Control	Heldout Num Positive	Heldout Num Control
	Nulli Positive	Nulli Collubi	Nulli Positive	Nulli Collifor
Vasopressor	6987	21865	1737	5461
Red blood cell transfusion	19171	9681	4776	2422
Fresh frozen plasma transfusion	2759	26093	620	6578
Platelet transfusion	27818	1034	6944	254
Mechanical Ventilation	13710	15142	3393	3805

Observed data

- 7 nurse-validated vital signs (hourly) heart rate, blood pressure, temp., SpO2, ...
- 11 lab measurements (much less than hourly) hematocrit, lactate, ...

each channel standardized to mean=0, var=1 with carry-and-hold for missing data

Switching Autoregressive Model

Latent State one of K possible values

Observed Vitals

7

Switching Autoregressive Model

Latent State z_t Observed Vitals x_t

$$x_t | z_t = k \sim \mathcal{N}(A_k x_{t-1} + \mu_k, \Sigma_k)$$

autoregressive Gaussian allows modeling trajectories/trends in vitals

Training Phase

Learn model parameters from many patients

variational EM algorithm

Prediction Step 1: Belief features

Infer distribution over hidden states at each timestep

HMM dynamic programming (forward alg.)

Step 2: Classify given features

Binary Intervention (did ventilate at hour *t*)

Logistic
regression
(with label-balanced cost function)

Task: predict onset in advance

Vasopressor prediction: 1 hr ahead

SSAM belief vector at time t using 10 states

Vasopressor prediction: 4 hr ahead

Ventilator: 4 hr ahead

Fresh Frozen Plasma: 4 hr ahead

Interpreting Latent States

Inspect classifier weights across all 10 states

Conclusion: state 9 seems to capture general physiological decline

Future Directions

Can we optimize generative models for particular downstream tasks without losing (too much) generalization?

Compare to alternative representation learning auto-encoders
RNNs, LSTMs, etc

Move towards **reinforcement learning** approach

Predicting intervention onset in the ICU with switching state space models

Marzyeh Ghassemi, Mike Wu, **Michael C. Hughes** Peter Szolovits, and Finale Doshi-Velez

Summary

unsupervised auto-regressive Markov modellarge cohort of 36,000 patientsimproves prediction on 5 interventions several hours ahead

Acknowledgments

MCH supported by Oracle Labs

MG funded by the Intel Science and Technology Center for Big Data and a National Library of Medicine Biomedical Informatics Research Training grant