Predicting intervention
onset in the ICU with
switching state space models




Problem: When will ICU patient
need intervention?

e.g.
mechanical ventilation

VaSOPIresSor (blood pressure drug) ’

g )

or fluid transfusion

Early prediction helps:
prepare patient
plan staffing
try less aggressive options early



Possible Approaches

What to predict?

— lots of work on general risk scores
* mortality, SAPS, APACHE

— less work on actionable interventions

How to represent patient state?
hanq-engmeered features e
continuous-state temporal models Caballero Barajas et al. 2014
discrete switching-state temporal models



Contribution

We show that an
unsupervised auto-regressive Markov model

trained on

large cohort of 36,000 patients

can improve predictions for

5 interventions several hours ahead

mechanical ventilation red blood cell transfusion
vasopressor plasma transfusion
platelet transfusion



Cohort from MIMIC-III dataset

mimic.physionet.org
(Johnson et al. Sci. Data 2016)

36,050 patients

recorded at Beth-Israel Deaconess in Boston
between 2001-2012

kept all adults with record within 6-360 hours

Intervention Training Training Heldout Heldout

Num Positive | Num Control | Num Positive | Num Control

Vasopressor 6987 | 21865 1737 5461

Red blood cell transfusion 19171 9681 4776 2422
Fresh frozen plasma transfusion 2759 26093 620 6578
Platelet transfusion 27818 | 1034 6944 254

Mechanical Ventilation 13710 | 15142 3393 3805



Observed data

7 nurse-validated vital signs (hourly)
heart rate, blood pressure, temp., Sp02, ...

11 lab measurements (much less than hourly)

hematocrit, lactate, ...
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each channel standardized to mean=0, var=1 with carry-and-hold for missing data



Switching Autoregressive Model

Latent Stat
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Switching Autoregressive Model
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autoregressive Gaussian allows modeling trajectories/trends in vitals



Training Phase

Learn model
parameters
from many
patients




Prediction Step 1: Belief features

Infer distribution
over hidden
states at each
timestep
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Step 2: Classity given features

Binary Intervention
(did ventilate at hour t)




Task: predict onset in advance

)

+2 hrs ahead



Vasopressor prediction : 1 hr ahead
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Vasopressor prediction : 4 hr ahead
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Ventilator: 4 hr ahead
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Fresh Frozen Plasma : 4 hr ahead
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weight

Interpreting Latent States

Inspect classifier weights across all 10 states
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Inspect data associated with belief state 9 ; B
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increased lactate, | ol W
lowered SpOZ2 and bicarbonate ‘

Conclusion: state 9 seems to capture general physiological decline



Future Directions

Can we optimize generative models for particular downstream
tasks without losing (too much) generalization?

Compare to alternative representation learning
auto-encoders
RNNs, LSTMs, etc

Move towards reinforcement learning approach
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Summary
unsupervised auto-regressive Markov model

large cohort of 36,000 patients
improves prediction on 5 interventions several hours ahead
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