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Abstract

In pursuit of tractable Bayesian analysis of categor-
ical data, auxiliary variable methods hold promise,
but impose asymmetries on the truly unordered
categories or spoil scalability via strong depen-
dencies in posteriors over parameters. The Diag-
onal Orthant Probit (DO-Probit) model proposed
by Johndrow, Lum, and Dunson (AISTATS 2013)
avoids these difficulties, treating all categories sym-
metrically while yielding tractable conditionally
conjugate inference. However, we show that the
intended DO-Probit likelihood for categorical ob-
servations, when paired with a normal prior, does
not yield a conjugate posterior. Instead, we clar-
ify that their posterior analysis is only correct for
a different model that treats observations as mul-
tiple independent binary draws. This raises two
questions: Other than tractability, what justifies
the binary model for categorical data? And how
should a binary model make categorical predic-
tions? To resolve these issues, using variational
methods we obtain a lower bound of a categorical
model’s marginal likelihood that can be optimized
by fitting the conjugate binary model. Optimizing
this bound enjoys all benefits advocated in the orig-
inal DO-Probit work. We further extend this fast,
reliable covariate-informed modeling of categori-
cal outcomes to groups or sequences of data related
in a hierarchy.

1 INTRODUCTION

We consider the problem of modeling categorical data in-
formed by covariates using the machinery of generalized
linear models. Because our intended big data applications
may involve rare events or little available data for some quan-
tities of interest, we pursue Bayesian analysis in order to
estimate distributions over unknown parameters given avail-
able data, and then average over these distributions when

making predictions. While many generalized linear mod-
els for categorical observations have been tried, Bayesian
analysis of these models remains a difficult problem with
substantial active research due to the need for methods that
are simultaneously accurate, tractable, and scalable.

The most common modeling choice for categorical data
is multi-class logistic regression, which uses a softmax
(a.k.a. multi-logit) function to produce category probabili-
ties. The model is not conjugate, and so estimating poste-
riors over weight parameters requires expensive sampling
methods [Hoffman and Gelman, 2014] or non-conjugate
variational optimization methods [Wang and Blei, 2013,
Braun and McAuliffe, 2010, Kucukelbir et al., 2017]. Re-
cent auxiliary variable methods [Polson et al., 2013] have
yielded expanded binary logistic models with conjugate
conditionals, but extensions to multiple categories require
stick-breaking [Linderman et al., 2015]. Stick-breaking im-
poses an asymmetric order over categories, yet in many
cases it is unnatural to view category selection as a sequen-
tial process. In practice, this asymmetry complicates prior
specification and inference quality [Zhang and Zhou, 2017].

An alternative model is multi-class probit regression, whose
link function is the cumulative distribution function of the
Normal distribution. The probit admits conjugate inference
under a well-known auxiliary variable representation [Albert
and Chib, 1993, Held and Holmes, 2006]. However, multi-
class probit models encode strong posterior dependence
between entries of the auxiliary parameter vectors. This
dependence requires one-entry-at-a-time sampling instead
of joint sampling [Johndrow et al., 2013], yielding poor
mixing performance as the number of categories grows.
Furthermore, implementations often require picking a “base
category”; this choice can impact the practical results of
inference [Burgette et al., 2021]. Finally, the multinomial
probit’s strong dependence results in a lack of closed-form
category probabilities [Johndrow et al., 2013], which alone
has prevented adoption within more complicated models
(e.g., see [Holsclaw et al., 2017]).
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Motivated by difficulties that arise from these previous ef-
forts, Johndrow et al. [2013] introduced the diagonal orthant
multinomial probit (DO-Probit) model. Their proposed con-
struction treats all categories symmetrically, yields tractable
category probabilities, and achieves conditionally conjugate
posteriors while avoiding any cross-category dependence
among auxiliary variables. These features should make the
DO-Probit a prime candidate for fast, scalable Bayesian
modeling of categorical data.

However, we have uncovered subtle but critical gaps in the
technical justification for the Bayesian analysis of the DO-
Probit provided by Johndrow et al. [2013]. In particular, we
find that the DO-Probit categorical likelihood, when paired
with a normal prior, does not admit conditionally-conjugate
posteriors even with auxiliary variables. The Gibbs sampler
presented in Sec. 3 of Johndrow et al. [2013] is not a cor-
rect sampler when the intended posterior is formed from a
categorical likelihood. Instead, it is a correct sampler only
when understood as fitting a different model: the indepen-
dent binary model, which is conditionally conjugate after
augmentation via the classic arguments for the binary pro-
bit [Albert and Chib, 1993]. This “model swap” may not be
obvious to readers of the original DO-Probit text and has
apparently gone unnoticed in some later uses of this method.
Magnusson et al. [2020] use the Gibbs sampler of Johndrow
et al. [2013] directly for a categorical likelihood, which is
not a valid posterior sampling technique.

The need for a model swap raises important questions: given
categorical data, what justifies using the independent binary
model, which is not intended for one-of-K categories, other
than tractability? If we insist on using the binary model,
how can we use it to make valid categorical predictions?

This paper makes several key contributions in attempting to
answer these questions:

1. We show that the DO-Probit model for categorical data
does not have a conditionally-conjugate posterior over
weights even with auxiliary variables (Sec. 2).

2. We suggest an effective way to make predictions about
heldout categorical data using the independent binary
model (Sec. 2.6), which in the intercepts-only case sur-
prisingly achieves indistinguishable prediction quality
compared to models designed for categorical data.

3. We introduce a new generalized linear model for cate-
gorical data, which we call the Simplified DO-Probit
model (SDO-Probit, Sec. 2). This model has similar
benefits as the original DO-Probit (symmetric treat-
ment of categories and closed-form category probabili-
ties computed using the probit function), but yields the
effective prediction strategy naturally.

4. We derive a tractable lower bound for the marginal like-
lihood of the Simplified DO-Probit categorical model,
and show that optimizing this bound corresponds to

fitting the observed data using the independent bi-
nary model (Sec. 3). This allows us to justify applying
the conjugate machinery suggested by Johndrow et al.
[2013] to otherwise intractable categorical models. Our
bound holds for the original DO-Probit model as well.

5. Using our bound, we provide an easily-implemented
variational inference strategy for categorical SDO-
Probit model that is fast and reliable. In particular,
the inference has three beneficial properties: (a) closed-
form updates, (b) decoupled auxiliary variables, and
(c) symmetric handling of categories. No prior work
known to us achieves all three properties. We provide
an algorithm which allows the technique to be extended
to any model which uses the SDO- (or DO-) Probit
complete likelihood (see Algorithm 1 in Sec. 3.2).

6. We highlight the advantages of this flexibility by intro-
ducing a hierarchical DO-Probit model for modeling
groups or sequences of categorical data (Sec. 4).

In summary, our new variational methods provide a prin-
cipled route to fast, scalable modeling of categorical data
using a surrogate binary model.

2 MODELS

We now formally introduce the models of interest and es-
tablish their properties. First, we introduce one model for
observed categorical data, the diagonal orthant probit, de-
noted throughout as DO, first described in Johndrow et al.
[2013]. Next, we introduce an alternative model for mul-
tivariate binary data, which we refer to as “independent
binary” or IB, first described in Albert and Chib [1993]. Fi-
nally, we introduce a new model for categorical data, which
we call the Simplified-DO Probit (SDO). We briefly discuss
maximum likelihood estimation for each model. We then
expose that in a posterior estimation context, neither categor-
ical model is conjugate even with auxiliary variables, due to
an intractable normalization constant. Thus, the Gibbs sam-
pler presented by Johndrow et al. [2013] for the “DO-Probit”
model is in fact only a valid sampler for the IB. This raises
the question of why one should apply the IB to categorical
data, which we address in Sec. 3.

2.1 DO-PROBIT MODEL FOR CATEGORY DATA

The diagonal orthant probit model [Johndrow et al., 2013]
describes the generative process for N categorical outcomes,
where each observation (indexed by ¢ € {1,...N})is a
one-of-K indicator y; € {1,2,... K}. These outcomes are
generated by transforming known covariate vector x; €
RM with unknown weight parameters 3 € RM>*K Let By
designate the k-th column of 3.

To generate observation ¢, we first draw a latent contin-
uous vector z; € Q C RX from a multivariate nor-
mal whose mean is determined by the dot product of co-
variates and weights but whose possible values are trun-
cated to the Diagonal Orthant region (2. This region con-



tains all K-dimensional vectors with one entry positive
and the rest negative. Formally, () := Ule Qr, where
O ={weRF 1w >0,w; <0V j#k}

Given vector z;, our second generative step is simply to set
the outcome y; to indicate which entry of z; is positive. This
two-step sampling is formalized for each ¢ € {1,... N}:
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Here, TN (n,V, R) defines a truncated multivariate nor-

mal distribution formed when a normal with mean 7 and
covariance V is truncated to region R.

The DO’s complete-data likelihood is:
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(2.1.3)

and where ® is the CDF of a standard normal. By con-
struction, C;(3) is the fraction of probability mass of the
unconstrained Gaussian contained in the set €2, i.e. the or-
thants with only one positive entry, and thus 0 < C;(3) < 1.
This fact will be useful in Sec. 3.

We can view z; as an auxiliary that can be marginalized out,
yielding category probabilities conditioned only on 3:
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This tractable formula was first given in Johndrow et al.
[2013, p. 4]. We emphasize that the standard multi-class
probit model has no such closed form.

2.2 A PROBIT MODEL FOR BINARY VECTORS

‘We now consider another model, which we call the Inde-
pendent Binary probit model (IB). This model produces N
observations (indexed by %), where each observation a binary
vector y; of size K. Crucially, y; is not a one-hot vector:
any number of entries could be 1 or 0. The variables here
play similar roles to counterparts in the earlier DO model,
but have different domains. Thus, we use symbols with bars
to denote IB variables.

Following Albert and Chib [1993], to generate observation
7 using the IB model, we first sample an auxiliary variable
Z;;. for each label k£ from a Normal whose mean is the dot
product of covariates x; and weights 3;, € RM:

Zik. | Br = N(x!'By,1). (2.2.1)

Second, we use the sign of the value of z;; to deterministi-
cally set the binary observation for label k:

_ 1 Eik Z 07
Yik = 0 otherwise.

The complete data likelihood for the IB model is thus:

(2.2.2)

K
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2.3 A SIMPLIFIED DO-PROBIT MODEL

We introduce a third model, which we call the simplified di-
agonal orthant probit or just SDO, which produces categori-
cal observations. Given covariates «; and weight parameters
3, we produce categorical outcome y; via:

(] Br)
IAREICED)
This is a simpler way to use the probit link function to
produce closed-form categorical probabilities than in the
original DO model in Eq. (2.1.4), hence the name “‘simpli-
fied” DO-Probit. While a similar construction appears in
Magnusson et al. [2020, p. 6], here for the first time we
detail important properties including this model’s complete
data likelihood with auxiliaries and resulting non-conjugacy.

2.3.1)

yi ~ Cat(py,...px), Dk =

The SDO is completed by sampling auxiliary variable z; €
Q,, C R from a truncated Normal whose pre-truncated
mean is a dot product of weights and covariates like previous
models:
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By definition, z; has only one positive entry (at index y;)
and all other entries are negative. Thus, this model still uses
a diagonal orthant construction.

The SDO complete data likelihood is given by:

K
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Here, the product of the indicators is sufficient to restrict
z; € §y, as required. CPO is a normalization term,

CRO(B) = (L, (2T B) (1,1 ®(—=7 B))),
(2.3.3)

which interestingly for this model depends on the chosen
category index y; = k. Like the previous normalization
term, CSP© always produces values between 0 and 1.

(2.3.2)

While this SDO model enjoys several properties shared by
the original DO model (closed-form category probabilities



DO posterior at N = 16 SDO posterior at N = 16

B B B
DO posterior at N = 8192 SDO posterior at N = 8192 IB posterior at N = 8192

IB posterior at N = 16

B2

B2
N RS

B2
b Lo amoas

ﬂZ
A I R

B2
o - N w &

-1 —— DOMLEs —— SDO MLEs
X IBMLE X BMLE X IBMLE

-4 -3 -2 -1 0 1 2 -4 -3 -2 -1 0 1 2 -4 -3 -2 -1 0 1 2
B B B1

4
3
2
@ ; v
1
-2 -2

Figure 1: Comparison of posteriors and ML point esti-
mates for two weight coefficients (51, 52) in intercepts-
only setting. Left: DO model for categorical observations.
Center: Simplified DO (SDO) model, also categorical.
Right: 1B model for binary observations. All models are
intercept-only (no covariates) with standard Normal priors,
and are fit to the first V examples of the same dataset (top
row N = 16, bottom N = 8192), generated with K = 3
categories with ground truth frequencies [0.02, 0.7, 0.28].

and symmetric treatment of categories), SDO is particularly
useful for connecting the IB model to categorical outcomes.

2.4 POINT ESTIMATION AND IDENTIFIABILITY

In general, there are infinitely many possible 3 parameters
that would yield the same category probabilities under the
DO model in Eq. (2.1.4). Thus, a maximum likelihood es-
timate (MLE) for 3 under the DO likelihood is not unique.
Similarly, the SDO -likelihood also has a non-unique MLE.
Below, we outline key properties about MLE estimators for
all models in the intercepts-only (no covariates) setting.

Unique MLE for intercept-only IB. Let py, ... px be em-
pirical category freq&mncies in a K-class intercepts-only
dataset: pr = % i—1 ly;=k. As Johndrow et al. [2013]
argue, if we encode the observations y; as one-hot vectors,
there is a unique maximum likelihood estimate for 3 under

the IB model, available by setting the weight for each k as:

B =27 (pr). 24.1)
MLE for intercept-only SDO. A similar argument can be
used to define an ML estimate for the SDO in an intercepts-
only setting. Suppose we restrict Zszl ®(By) = r for some
r € (0, min, ). Fixing r, the unique MLE for SDO is:

DL
By = <I>71(7‘pk).

When r = 1, the SDO MLE for 3 here is exactly equal to
the IB MLE from Eq. (2.4.1).

(2.4.2)

MLE for intercept-only DO. Similarly, in an intercepts-

only version of the DO model, if we enforce the constraint

Z,{,{:l ‘1;12(76513) = s for a specific s > 0, then we can com-
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Figure 2: Comparison of posteriors for two weight coeffi-
cients (31 2, 33 2) fit to synthetic data where each exam-
ple has one covariate drawn from a standard Normal.
Left: DO model for categorical observations. Center: Sim-
plified DO (SDO) model. Right: IB model for binary ob-
servations. All models have standard Normal priors and
K = 3 categories. We fit to the first N examples of the
same dataset. Unlike the intercepts-only case, IB and SDO
do not concentrate on the same weight values as N — oc.

pute the MLE for each category k as:

- SPk
=0t :
& ( 1+ spg )
Plugging this value into Eq. (2.1.4) yields category proba-

bilities that exactly match the observed frequencies p.

(2.4.3)

Stepping back, we emphasize that Johndrow et al. [2013]’s
only technical justification for using the IB model seems to
be that in an intercepts-only setting, the IB has unique MLE
weights that exactly match the MLE for a categorical DO
model'. We find this argument for using IB insufficient, as
it applies only to the maximum likelihood point estimation
setting without covariates. This leaves a critical gap: we lack
justification for the IB as a model for categorical data with
covariates when we seek posteriors, not just point estimates.

2.5 BAYESIAN POSTERIOR ANALYSIS

The three models discussed here — DO, SDO, and IB — each
induce a distinct posterior over weights when given the same
data and same prior. Fig. 1 shows each model’s posterior
over two weight coefficients given toy categorical data in
the intercepts-only setting. Fig. 2 does the same given a
synthetic dataset with covariates. Posteriors are estimated
via the NUTS sampler [Hoffman and Gelman, 2014], as
implemented in NumPyro [Phan et al., 2019] using JAX for
automatic differentiation [Bradbury et al., 2018]. For large
N, we also show the unique MLE for IB and the manifold of
possible (non-unique) ML estimates of weights for DO and

!Johndrow et al. motivate the IB via a “marginal MLE restric-
tion”, which we think corresponds to the special case where IB’s
MLE exactly matches SDO’s MLE when » = 1. No such MLE
relation exists for DO. Johndrow et al. do not define the SDO
explicitly, however.



SDO, using formulas in Eq. (2.4.1)-(2.4.3) (these formulas
only apply in Fig. 1).

In the no-covariate case of Fig. 1, SDO and IB share an
MLE, and thus for large N the IB posterior concentrates
its mass where the SDO does. However, in Fig. 2, all three
models have distinct posteriors and even with NV = 8192
examples, the IB posterior does not necessarily concentrate
where either DO or SDO do.

We now assess the conjugacy properties of each model. We
assume the weight parameters are given a normal prior.

Observation 1: The IB model’s complete conditionals all
have conjugate form. Classic arguments about the binary
probit [Albert and Chib, 1993, Held and Holmes, 2006]
show that the intended posterior conditionals can be written
as a Normal for pig(3 | z,¥) and a truncated Normal for
pis(Z | B, ). This posterior is clearly the one fit by the
Gibbs sampler in Johndrow et al. [2013].

Observation 2: The DO model’s complete conditional
for weights 3 is not normal and thus not conjugate.
Combining a normal prior over 3 with the DO-Probit like-
lihood in Eq. (2.1.2), the resulting posterior p(3 | z,y) in-
cludes the normalizing constant C;(3) in Eq. (2.1.3), whose
functional form spoils conjugacy: including this term means
the log posterior is not a quadratic function of 3.

Observation 3: The SDO model’s complete conditional
for weights 3 is not normal and thus not conjugate. We
follow a similar argument as the DO model. The complete
data likelihood of Eq. (2.3.2) contains the normalizing con-
stant CPD°(B) (Eq. (2.3.3)) that spoils conjugacy.

Thus, both DO and SDO categorical models are not conju-
gate, simply by inspection of the complete data likelihood.
This is not stated clearly in Johndrow et al. [2013] and has
led others to assume their Gibbs sampler is correct for a
categorical likelihood, which is not true.

So while Johndrow et al. [2013] advocate for Bayesian
analysis of categorical data with DO Probit models, in fact
the Gibbs sampler they derive is only correct for the inde-
pendent binary generative model. This leaves two gaps in
understanding: How should the IB make predictions for cat-
egorical data? More importantly, why is the IB appropriate
for Bayesian analysis of categorical data? We answer the
first question in Sec. 2.6, and the second in Sec. 3.

2.6 PREDICTIONS FOR CATEGORICAL DATA

Suppose we have specific weight values 3 for the IB that
have been fit to purely categorical data. For example, this
may be an ML estimate of the weights or a posterior sample.
We wish to predict a new observation, which we are reliably
informed will be categorical. The IB’s support is then mis-
specified, because it could produce any binary vector, not
just those with one positive entry.

IB+DO. It seems natural that a new observation (indexed

by *) belongs to category k& with probability proportional to
the IB likelihood producing the one-hot vector eg:

(Y = ex|B, )
Ef:l pIB(Q* = ee‘la) 33*)
(2.6.1)
Here, we normalize over the set of possible one-hot vectors
of size K. We call this the IB+DO estimator of heldout

likelihood, because mathematically this reduces to plugging
IB weights 3 into DO’s probability formula in Eq. (2.1.4),

P+po (Y« = k:\as*,B) =

IB+SDO. An alternative estimator of heldout likelihood is:
D(x] B)
PIAREICEYEN)
which we refer to as “IB+SDQO”, because it uses our Sim-

plified DO formula for translating the IB weights 3 into
category probabilities. For another motivation, see Sec. B.

Prspo(ys = k|z., B) = . (262)

These two estimators are compared both visually and quan-
titatively in Fig. 3, where posterior samples of weights from
the same IB model are plugged into each estimator to pre-
dict heldout categorical data. We see significant practical
reasons to prefer the IB+SDO estimator in this intercepts-
only setting, as it matches the true category frequencies far
better than IB+DO. Despite the fact that the IB model is
misspecified (it is not naturally a model for categorical data),
by fitting the IB model and then applying the SDO estimator
(which ensures valid categorical predictions) we can surpris-
ingly deliver heldout likelihoods that for all dataset sizes
N > 16 are indistinguishable from models like DO or SDO
that directly capture the categorical nature of data.

3 VARIATIONAL METHODS

We have clearly established that [Johndrow et al., 2013]’s
tractable posterior is targeted at the independent binary
model, which is not a model for categorical data. In this
section, we provide a principled justification for applying
a binary model to categorical data, based on relating the
binary model and our suggested Simplified DO-Probit cate-
gorical model via variational methods.

Variational inference [Blei et al., 2017] deterministically
approximates a posterior distribution by finding the member
@ € Q of a tractable family of distributions which maxi-
mizes a lower bound on the logarithm of the evidence (the
marginal likelihood of the data). This lower bound is known
as the evidence lower bound or “ELBO”.

Our strategy is to show that this lower bound under the
misspecified (but tractable, conjugate) IB model, is in turn
a lower bound for the same data under the desired (but in-
tractable, non-conjugate) SDO model. Thus, by using the
conjugate machinery suggested in Johndrow et al. [2013] to
obtain closed-form coordinate ascent updates that maximize
this surrogate bound, we are not merely swapping in a con-
venient model that undesirably is unaware of the categorical
nature of our data, but instead exactly improving the fit of
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Figure 3: Comparison of categorical predictions using posterior samples from the IB binary model. In this intercept-only
(no covariates) setting, we find that IB + SDO offers indistinguishable performance from (harder-to-fit, non-conjugate)
categorical models, and superior performance to the IB+DO alternative. IB generates binary vectors by design and thus
requires a post-hoc estimator (denoted “+DQO” or “+SDO”; defined in Sec. 2.6) to ensure valid categorical predictions. Left:
Visualization of posterior over the probability of category 2, whose true frequency is 0.7. Right: Average log likelihood
on heldout set for each model as size of training set N increases. For most methods, we compute the predictive likelihood
log p(y«|y1.n ), marginalizing out weights via Monte Carlo averages of posterior samples. Cat MLE baseline just point
estimates category frequencies via maximize likelihood. Setting: We fit to the first NV examples of a toy dataset, generated
with K = 3 categories with ground truth frequencies [0.02, 0.7, 0.28]. All models use a standard Normal prior over weights.

a suitable generative model. Our strategy will later allow
us to easily extend the SDO to more complicated graphical

corresponding expectation under IB for all observations ::
Eq[log pspo(yi; zi | B)] > Eqllog pis(yi=ey,, zi=2; | B=P)].

models, as we illustrate in Sec. 4.

3.1 RELATING MODELS VIA BOUNDS ON
MARGINAL LIKELIHOODS

We begin with a variational treatment of the SDO model (Eq.
(2.3.2)) with a Normal prior density 7 on 3. The evidence of
interest is pspo(y) = [ [ pspo(y, z | B)7(B)dzdp. If we
select @ as any distribution over (z € Q, 3 € RM*X) and
let ¢(-) be the density of @, then the traditional lower bound
of the log of the evidence, which we denote ELBOgpo <
log pspo(y), follows from Jensen’s inequality:

ELBOspo(q) = Eq[log pspo(y, 2 | B)7(8)] —E4[log q(2, B)] .

energy entropy

Unfortunately, this lower bound is intractable due to the
SDO normalizing constant (Eq. (2.3.3)); we must handle
N terms of the form E,[log 022? (8)], which lack closed-
form expression and thus require high-dimensional integral
approximations when the number of categories is large.

However, we observe that given the same data y; and a
corresponding auxiliary variable z; € €2,,, the SDO model
will always assign a higher likelihood than the 1B:

pspo(Yis zi | B) > pe(Yi = ey, 2i = 2z | B = B)
(3.1.1)
where e,, is the one-hot vector where index y; € {1,... K}
is positive. The relation in Eq. (3.1.1) follows immediately
from the complete data likelihoods (2.3.2) and (2.2.3), along
with the observation that C3°(3) produces values between

0 and 1. It is always valid to provide values from the domain
of the SDO model to the IB model.

Next, we argue by monotonicity of the integral, that the
expected complete likelihood of SDO is bounded by the

(3.1.2)
This left hand side is a critical additive piece of the
SDO ELBO, and the right hand side is a tractable surrogate
bound with no troublesome normalizing constant CSP©,

We therefore define a surrogate objective Lspo(q) that lower
bounds SDO’s log marginal likelihood (Eq. (2.3.2)):

log pspo(y) > ELBOspo(¢; ¥)
= Eq[log pspo(y, z | B)] + Eq[log 7(B)] — Eqllog q(z, B)]

(3.12

57 By llog pis (3, 2 | B)] + Eqllog 7(B)] — Eq[log 4(%, B)]
= ELBOis (q; ’g) = ﬁs[)o(q) (3.1.3)

We call this a surrogate lower bound because there are
two bounds at work: the traditional ELBO (via Jensen’s
inequality) and the bound relating SDO to IB in Eq. (3.1.2).
Our surrogate objective Lspo(g) can also be seen as exactly
the traditional ELBO applied directly to the IB model.

Our bound argument for applying the IB model to maximize
the evidence of categorical data in Eq. (3.1.3) relies on
crucial (but achievable) assumptions. First, both SDO and IB
models need to have the same prior density 7w over weights
(which should be Normal for conjugacy under the IB model).
Second, that our approximate posterior ) with density ¢ can
conceptually generate the unknown variables for either SDO
or IB. This is possible because given the same categorical
data y, these distributions will have the same support.

Relation between DO and IB. The arguments above that
justify the IB ELBO as a lower bound for the SDO ELBO
would naturally hold for the original DO-Probit model as
well, not just our simplified model, because the DO nor-
malization constant is also guaranteed to be between 0 and
1. However, the posterior visualizations in Fig. 1 suggest



the SDO is a better target model at least for large IV in the
intercepts-only regime, as the IB’s regions of high posterior
density have more overlap with the SDO than the DO.

3.2 ALGORITHM FOR POSTERIOR
ESTIMATION

Via the surrogate bound relation established in the previous
section, we can provably optimize our intended categorical
SDO model by instead maximizing the traditional ELBO of
the independent binary model. This argument holds for any
selected approximate posterior () over z, (3.

In this section, we develop an algorithm for coordinate
ascent variational inference (CAVI) that can benefit from
the conjugacy of the IB model. We assume that () has a
mean-field factorization: ¢(z, 3) = ¢(z)q(3). Under these
choices of algorithm and factorization, deriving the steps of
the algorithm follows a standard general recipe [Blei et al.,
2017] and has been previously applied to binary probit mod-
els [Consonni and Marin, 2007, Armagan and Zaretzki,
2011, Fasano et al., 2021].

We can further generalize this strategy to any model M
whose joint distribution over all visible and unobserved vari-
ables (denoted w) includes an SDO-Probit complete data
likelihood (Eq. (2.3.2)) for observed y and latent z as well
as a conditionally-conjugate prior on weights 3. This gen-
eralization is possible since the lower bounding argument
hinges solely on the expected complete data likelihood in
Eq. (3.1.2). Generalization allows us to handle more flexible
models such as the hierarchical SDO given in Section 4. We
summarize our VI strategy in Algorithm 1.

Algorithm 1

1. Take Q to be a mean-field family with factorization:
1% .

q(ui,...;uv) = [[,_; q(uy), where each u, is an

unobserved variable (z and 3 are included in this set).

2. Construct the surrogate model, Mg, by swapping the
IBP likelihood (2.2.3) for the SDO likelihood (2.3.2)
and use it to compute surrogate complete conditionals:

{IngMIB (uv | U—y, y)}

3. Define the objective: La((q) = E,[log Wg(ig“)].

4. Optimize Laq(q) using optimal coordinate as-
cent updates [Blei et al, 2017]): ¢,(u,)
exp {Eq_, [log paty (wo | w—y, y)] }. If the complete
conditional is an exponential family with natural pa-
rameter 7),, SO is its optimal update, with natural pa-
rameter given by

vy =Eq_, [no(u_y,y)] 3.2.1)

The updates in Algorithm 1 will yield a density ¢* thatis alo-
cal maximum of the ELBO of the surrogate model [Ormerod
and Wand, 2010], and therefore a local maximum of a sur-
rogate bound on our intended SDO categorical model. All
conditionals directly related to our SDO complete likelihood

enjoy the closed-form updates given by Eq. (3.2.1). Note
that the same strategy also applies to models with DO-Probit
complete data likelihoods.

4 THE HIERARCHICAL SDO-PROBIT

We now illustrate the extensibility of our framework by in-
troducing hierarchical SDO-Probit models, designed for
datasets where observed categorical responses are nested
within groups. For instance, the model can handle collec-
tions of categorical time series (see Section 4.1).

Let our dataset consist of J groups (indexed by j), each
one containing N; units (indexed by ¢). We assume that
each group is given a group-specific weight parameter 3;,
and that these are generated in a hierarchical fashion with a
common prior:

“kEN(m07%)> k:177K
Sk S W (v, So), k=1,..,K
Bir = N (b, Sr), G=1,0d 4.0.1)

Here, we introduce unknown location vectors and covari-
ance matrices puy, 2y defining regression weights across
groups for each category k, which have standard Normal
and Inverse Wishart priors.

Given group level parameters 3;, we can combine these
with the covariates x;; at each unit 4 within group j to
produce categorical observations y;; € {1,2,... K}:

@(z5,85r)

f:l q)(iji/Bﬂ )
Auxiliary variables z;; can be also introduced from an ap-
propriate truncated Normal, following the SDO generative
process (Eq. (2.3.2)). Given this model, developing a coor-
dinate ascent variational inference follows naturally from
Algorithm 1. Details are worked out in Appendix C.

4.1 HIERARCHICAL AUTOREGRESSION

In order to model multiple related sequences of categorical
observations over time, we develop a hierarchical multi-
class autoregressive model as a special case of Eq. (4.0.1).
In this case, the units (indexed by 7) are timesteps, and the
groups (indexed by j) are the sequences. We simply need
to adjust the covariates so that they include the previous
timestep’s categorical outcome.

yij ~ Cat(pij1,...pijk), Dijk =

The dynamic covariates have the block structure

2ji = [(0;)7 (ey,. )" (@57 e RY
The first block bj; is [1] if an intercept is used and empty
otherwise. The second block e, , _, indicates the previous
category ¥; ;—1 via a one-hot vector of length K. The third
block ¢ € RM- are exogenous dynamic covariates. We
can write M = 1+ K + M, assuming an intercept is used.

(x

Correspondingly, the regression weights decompose as

/Bjk = (B;ntercept)T ( jtlzansition)T (I@;)];Og)T} T
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Figure 4: The reduction in relative error obtained by using
the IB+SDO estimator over the IB+DO estimator after fit-
ting the IB model with our variational inference scheme.
Box plots show the spread in performance across several
replicates of a data-generating process. Large positive values
indicate that IB+SDO delivers better estimates.

Despite the complexities of this model, using our variational
framework we can develop a coordinate ascent algorithm
with closed-form updates.

5 EXPERIMENTS

5.1 PREDICTING CATEGORICAL RESPONSES
WITH AN INDEPENDENT BINARY MODEL

Since the IB model via lower bound arguments approxi-
mates the posteriors of both the DO-Probit and SDO-Probit
models, our goal is to assess in practice which model’s
estimator performs better at predicting heldout data.

The methodology for data simulation and model fitting
is given in Sec. D.1. We consider synthetic datasets of
N = 4000 training examples, K = 3 categories, and
M = 3 covariates drawn from different ground truth mod-
els.? Given a variational posterior obtained via Algorithm
1, we compute the posterior mean weights as a point esti-
mate, B, and then make predictions with either the IB+DO
(Eq. (2.6.1)) or IB+SDO (Eq. (2.6.2)) estimators.

To assess the relative performance of estimators, we report
the relative reduction in error from using IB+SDO over
IB+DO as (£spo — #po)/(fpo — Lgr), where £ is the mean
log probability of the observed category across observations
in the heldout test set. The ground truth likelihood, denoted
GT, is obtained by plugging the known data-generating
regression weights into the known model. We report the
spread of these error reduction values across 10 replicates
of each data-generating process in Fig. 4.

This figure suggests that IB+SDO produces superior perfor-
2Our multinomial probit model used a diagonal covariance

matrix on the latent variables. Thus, like the other models, it has
the property of independence of the irrelevant alternative
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Figure 5: Mean test likelihood of the rarest category (5%
of all observations). The hierarchical model assigns higher
likelihood to this category when it appears.

mance on a typical dataset, although IB+DO is superior in
certain cases. We thus recommend the IB+SDO estimator
as a reasonable default. We assess absolute performance by
reporting the geometric means ( exp({gr), exp(fspo)) at
the bottom of Figure 4, and find that our variational scheme
provides a good approximation of the ground truth, despite
intentionally using a mis-specified model.

5.2 MODELING MULTIPLE CATEGORICAL
TIME SERIES

Here we demonstrate how applying Algorithm 1 to the
autoregressive models of Sec. 4 enables easy variational
inference for collections of categorical time series. We gen-
erated simulated data (as described in Sec. D.2) with 10
sequences, S categories, and 3 exogenous covariates. We fit
a VI posterior approximating the hierarchical autoregressive
SDO-Probit model of Sec. 4.1. Overall, we found that the
hierarchical model provides a modest but consistent boost
in heldout likelihood: the mean likelihood of test data in-
creased from 59.9% to 62.5% with a minimum gain across
groups of 1.3%. The hierarchical structure was particularly
advantageous for predicting rare categories, as shown in
Fig. 5. The hierarchical model shares statistical strength
across time series, a capacity supported by our extensible
framework.

6 DISCUSSION

In summary, our new variational methods provide a prin-
cipled route to fast, scalable modeling of categorical data.
While our variational methods are most practically viewed
as simply fitting the conjugate binary model, we show this
can be motivated via a rigorous lower bound on the marginal
likelihood of a categorical model. Future work could ap-
ply these methods to real datasets, investigate the tightness
of the objective, and extend these methods to models with
latent (unobserved) categorical variables.
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A PRELIMINARIES

A.1 THE INVERSE WISHART DISTRIBUTION

The Inverse Wishart is a distribution on symmetric, positive
definite matrices. Under a natural parametrization, the In-
verse Wishart distribution, denoted W~ (v, ®), has density

p(Z) o ||~ CHID 2 exp {—m(z—l\p)] (A.1.1)
where 3 > 0 and v > d — 1 to have a proper prior.
The expected value of an Inverse Wishart random variable
parametrized as in (A.1.1) is given by E[X] = —¥_ The

v—d—1
expected value of the precision matrix is E[X 1] = v ¥ 1,

A.2 UNIVARIATE NORMALS TRUNCATED TO
POSITIVE OR NEGATIVE REALS

We will work with distributions truncated to the posi-
tive or negative reals, and so we define special nota-
tion: N\ (11, 0%) = TN (1, 02, [0, 00)) and N (1, 02) =
TN (, 02, (—00,0)). In particular, we will work with ran-
dom variables of the form Ty ~ ANy(p,1) and T ~
N_(u, 1). Based on this construction, it is straightforward
to derive

@) = {25 10 fr @) = S
E[T}] = 1+ %, E[T ] =pu— ii:‘;)) (A2.1)

Var[T}] = 1 — p(B[T4] — p) — (E[T4] — p)® (A22)

VarlT] = 1— p(B[T-] — ) — (B[T_] - p)*  (A23)
T = In (vVare 1 = a(-p)) - 55 (a24)
H[T-] = In (v2re &(—p)) + uo(=p) (A.2.5)

20(—p)

where we use ¢ and @ to refer to the pdf and cdf, re-
spectively, of the standard normal distribution, and where

= — [ f(z)In f(z) dz represents the differential en-
tropy of a random Varlable X with density f.

Remark A.2.1. (Representation in terms of perturbation
of parent mean) It is sometimes convenient to express the
expectation of a truncated random variable as a perturbation
of the expectation of its parent (pre-truncated) Gaussian
random variable. To this end, for Ty € {T, T}, we write

ol=m)
EIT) =+ 6,(n), 8o()i={ 17 20
: s\h - Gs P(—p)
o(-p)  °
(A.2.6)
which holds by (A.2.1). A

B ANOTHER MOTIVATION FOR THE
IB-SDO ESTIMATOR

Another way to motivate the IB+SDO estimator is to con-
sider an intercepts-only version of the IB model. Given

a training set where the true frequency of category k is
Pk, a simple “moment-matching” argument suggests that a
good point estimate of 3 should satisfy ®(83) ~ px. Thus,
making predictions by computing ®(3;) for each category
index k and normalizing should given a decent estimate of
the training set’s frequency of each category.

C VARIATIONAL INFERENCE FOR THE
HIERARCHICAL SDO
C.1 VARIATIONAL FAMILY

We take the mean-field variational family for the Hierarchi-
cal SDO-probit model (4.0.1) to have density given by

1
a(z, 8,1, %) = q¢(B)a(z)a(X)q(p)
K J Nj
2
=] gl g=0) [ aBw) q(zijn)
[ el —~ I g i=1 — Y
Nk, Vi) W™ (D, Sk) N(Bjks k) TN @ijrs 1, Qi)
(C.1.1)
R+ i =k
where Qg =4 0 YT (C.12)
R™, otherwise

Equality (1) is by mean-field assumption, and, as we see
below, (2) is the optimal such form as per Algorithm 1.

C.2 SURROGATE COMPLETE CONDITIONALS

The hierarchical Bayesian DO-Probit model (4.0.1) has a
surrogate model which is a hierarchical Bayesian linear
regression on the auxilliary variables z. In this way, we
obtain the surrogate complete conditionals

NilaliBin, 1), vy =k
Zijk | Bits oy Bik, Yig ~
N_(xl;Bjk, 1), otherwise
(C2.1)

where NV and NV_ are truncated normal distributions defined in
Section A.2, and

Bik | Zjk, i, B ~ N (1, Bix),

-1
Wi = X (Egluk + X zjk), ¥ = (2;1 +X; Xj)

(C2.2)
and
Sk | e, Biks ooy Bak ~ W (Vo + J, S0 + S“k)
J
Z Bir — m) (B — pr)” (C2.3)
and
1223 | Ekaﬁlka "'a/@Jk NN(m;mVl-c,)v

J
g — 1
mj = ‘/kl(%mo + JEklﬁk), Br =~ > Bk

-1
Vi = (Vg{l + Jz,;l)



C.3 COORDINATE ASCENT UPDATES

All of the surrogate complete conditionals are in the expo-
nential family, and hence we know from Algorithm 1 that
the optimal variational factors with respect to the surrogate
lower bound Ly spo are in the same exponential family, with
parameters given by (3.2.1). Here we derive the parameters
for the updates, using the notation of (C.1.1).

Updates to {¢(3;x)};x Since the natural parameters of
a multivariate Gaussian are the precision and precision-
weighted mean, we reparametrize the surrogate complete
conditional for each 3;y, in (C.2.2) before taking variational
expectations of the parameters. Hence, the optimal update to

each ¢(B;x | fjk, 2;1) with respect to the objective Ly.spo
is given by
S =Eq g, [2;1 + Xij] =By (B¢ ']+ X)X
<S8+ XX
BBk =Eq g, [Eﬁluk + Xszjk}
— Eop, [Z5 By, ] + XTE,. 2]

2 5 S) iy + X[ B, 2]

where E,[z;1] is given explicitly below. Equations (1), (2)
follow from Sec. A.1.

Thus, in standard parameterization, we update

Bk = Zjk (%gilmk +XjEq., [ij])

-1
S = (s,;l’zik + Xij>

where E,[z;;] € RYi has i-th entry given by

Mijk + T o—r0) ¢((I:77”f) , Yig =k
Eq[zik] = ~ 2k
Nijk — LW, otherwise
@(—7ijn)

by properties of the truncated normal distribution (Section
A.2). Recall that ¢ and P refer to the pdf and cdf, respec-
tively, of the standard normal.

Updates to {q(pr)}x Since the natural parameters of
a multivariate Gaussian are the precision and precision-
weighted mean, we reparametrize the surrogate complete
conditionals for py, in (C.2.4) before taking variational ex-
pectations of the parameters. Hence, the optimal update

to q(pr | M, Vk) with respect to the objective Ly.spo is

given by

Vi'=Eq ... [Vo* + ngl} =V '+ JEey, (2]
LV, IS o

J
V. m, =By, {V{lmo +IBY ﬁjk}

j=1

J
= Vi o+ B, (5] ) B, 83
j=1
9 . J
= Vo tmo + S0 Y gk
j=1
Equations (1), (2) follow from Sec. A.1.

Thus, in standard parameterization, we update

J -1
my = Vi (v;;lmo + 8, ' Zﬁjk), Vi = (v(;l + Js,;lﬁk>

j=1

Updates to {¢(X;)}r Since the natural parameters of an
Inverse Wishart are identical to the conventional parameters
(up to a multiplicative scalar constant), we do not need to
reparametrize the surrogate complete conditional for 3
in (C.2.3) before taking variational expectations of the pa-
rameters. Hence, the optimal update to ¢(Xj, | Sk, V) with
respect to the objective Ly spo is given by

;kIEq_E[Vo—f—J] =+ J

J
Sk =E, 4 [So + Z(ﬂjk — i) (Bik — Nk)T]
j=1
J
= S0+ ZELE {ﬁjkﬂﬁ — Binki + 1By + Hkﬂ£:|

j=1

J
D S0+ Vet 0 Syt (fgn — ) (e — )"

j=1
(C3.D
where in (+) we used
Eqlpipi ] = Varg[pr] + Eq[par]Eqps]” = Vi + mxmmi
Eq[BxB7] = Varg [Bj] + Eq[Bix]Eq[Bjx]" = Zjx + fijnfiss

and
(mean_ field)

E, [ﬂakﬂg] = Eq[Bik]Eq [NZ] = ﬁakmz
with Ey[u13],] handled similarly as E, 3%} |.

Updates to {q(z;jx)}ijr  In (C.2.1), we saw that the sur-
rogate complete conditional for each z;;; has the form
TN (1ijk, 1, Qijk), where ;. is defined as in (C.1.2). But
since each such distribution is in the exponential family with
natural parameter 7;,, the optimal update for each ¢(z;,)
is given by

Tijk = Elad; Bix] = @i



C4 LOWER BOUND

A tractable surrogate lower bound on the marginal log likeli-
hood for the Hierarchical DO-Probit model (4.0.1) — useful
for tracking the monotonic increase in the objective function
and setting a convergence criterion — can immediately be
obtained by handling the expected complete data likelihood
precisely as in Section 3.1

qllogq(z, B, p, )]

entropy

ELBOu-spo(q; ¥) = Eq[log puspo(y, 2, B, p, X)] —E

energy

= Eq[log pspo(y, z | B)] + H[q(2)] — KL(q(B, 1, =) || p(B, 1, X))

37 Eqllog s (3, = | B)] + Hla(2)] — KL(a(B, 1, ) || p(8, 1. =)

= ELBO®(¢, ¥) — KL(q(k, =) || (1, )) 1= Luspo(g; y) (€41
We expand this lower bound using:
J N K
Luspo(q Z Z ZE [log pis (Fijk, zijk | Bjk)]
j=11i=1 k=1 A)
J Nj K K
+ 2_:1 2 ;H[Q(zijk)] + Z KL(q(pr) || prspo(per))
j=11i= =1 (B') k=1 <
K
+ Z —KL(q(Zk) || prspo(Zk))
k=1 P
J K
+ Z Eq { (a(Bjx) || prspo(Bik | uk,Ek))} .
j=1k=1
(®)
In particular term (A) is given by
E, [log pis (Yijk: zijk | Bjk)]
1 1_ - =
—5 (10827 4 1) + 577k 0, (Tigne) — 5503}21@%
where
- ¢(q)(a:) b=t
=~ ~ —®(—x
Tijk = e and 6 (x) = $(—z)
— , b=0
O(—x)

Term (B) is the entropy of a truncated normal distribution,
where the (ijk)-th element in the sum is

* the entropy of Ny (@] fix, 1) when y;; = k, in which
case the entropy is given by (A.2.4)

« the entropy of N_ (mz;ﬁk, 1) when y;; # k, in which
case the entropy is given by (A.2.5).

Term C is the KL divergence between two multivariate
Gaussians; in this case we have

KL(Q(IJ'k) || P(I—Lk))
1 Vo

= or g M = m) TV )+ tr(v(,*%)}
k

Term D is the KL divergence between two Inverse Wisharts;

in this case, we have

=) [ () = 1og(

v M
2

v (%)

F]M(%)

~ M ~ .
Vo — Vg v — M 41
()

where I'y; is the multivariate gamma function and ¢ is the
digamma function given by ¢(z) := L InT'(z).

Term E gives the expected KL divergence between two
multivariate Gaussians, in the specific case where the ex-
pectation is taken with respect to independent Gaussian and
Inverse Wishart distributions on the parameters of the sec-
ond argument of the KL divergence. Utilizing the mean-field
assumption, we find

KL (q(

) + %tr(gk_lSo)

14 ~5—
~ 5 log |5, S|

Efl(#k | Mk, Vi) a(Sk | Pk,8%) |:KL(Q(IBJ'1€ | ik, Zjk) H p(Bjk | pk, 2k)):|

M -
1 ~ v —1+1 =
—Q[M(log2+1)+log|5kilw(2 >710g|2jk|

+ tr (51@&’;:1 [BjiFig, — Bjemg — mufiy + Vi + mgmy, + i]k}) .

D METHODOLOGY FOR
EXPERIMENTS

All models in both experiments were run to a convergence
criterion satisfied when consecutive iterations produced a
drop of 1.0 or less in the surrogate lower bound on the
log-evidence.

D.1 METHODOLOGY FOR EXPERIMENT 1

We generated a toy dataset of iid categorical observations

as follows. We randomly sampled regression weights 3y, S
Nar(0,I) foreach of k = 1, ..., K categories (K = 3) and
M = 4 covariates. For each of N = 5,000 samples we sam-
pled exogenous covariates ;¢ ~ N3(0, I) and added an
intercept to obtain &; = (1, :cexog) Given the covariates and
regression weights, we then sampled categorical observa-
tions y; € {1, ..., K} according to three different generative
models: the DO-Probit, SDO-Probit, and Multinomial Logit
model.

We performed variational inference using Algorithm 1 for
the SDO-Probit model. We trained on the first 4,000 obser-
vations and tested on the remaining 1,000.

D.2 METHODOLOGY FOR EXPERIMENT 2

We generated a toy collection of categorical sequences as
follows. We assumed K = 5 categorical responses. For co-
variates, we assumed B = 1 intercept term, K (first-order)
autoregessive terms, and M, = 3 exogenous covariates;
thus, each «;; had M = B + K + M, = 9 elements. We
assumed no interactions.



We generated data for J = 10 sequences (T;”lin = 50 train-
ing timesteps and 77*" = 950 testing timesteps) via the
generating process

—2. 0. 0. 0. 0.
4. 0. 0. 0. 0.
—-0.348 —-0.238 2.184 —-0.251 —0.12
1411 —-0.254 0.969 0.936 —1.34

p=| o 0. 0. 0. 0.
0. 0.1 0. 0. 0.
0. 0. 0.1 0. 0.
0. 0. 0. 0.1 0.
L o 0. 0. 0. 0.1 |
2

e =0 Iy, oo =1.0
B~ N (px, =)
wji=[1 0 Tje Tz ey, |
Zjil Y Bernoulli(p = .05)
Tiim S N(0,1), m € {2,3}
yi; = k | B; according to (2.1.4)

where g, is the kth column of the matrix g € RM <% Note
that p discourages the appearance of the 1st category, but
that the rare binary covariate x;;; is highly predictive of its
appearance.

We performed inference with a hierarchical DO-Probit au-
toregression (4.0.1) (see Section 4.1), as well as a collection
of separate flat DO-Probit autoregressions (2.1.1), one for
each group.

After training, we computed the likelihood (i.e. model prob-
abilities) of categorical observations in a hold-out test set.
Category probabilities were computed using (2.1.4) with

Eq[ﬁ | yl.
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