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Abstract

Here we present a framework for approximate statistical inference on a target observation model
F via inference on an observation model H with broader support which gives relatively easy and
efficient inference. For example, inference is typically easier to derive and implement, and quicker
to compute, for an independent binary model than a categorical model, or for an unconstrained
model than a model truncated to some possibly exotic region. If the pair (F,H) is chosen such that
the likelihood of F dominates that of H , then our framework gives a simple recipe for approximate
inference. In the frequentist paradigm, we can substitute the maximum likelihood parameters for H
into F . In the Bayesian paradigm, we can use the posterior under likelihood H as an approximate
posterior under likelihood F . We show that this dominated likelihood approximation provably
minimizes an upper bound on an error term between the true data generating distribution and the
now tractable model. Experiments on real datasets fitting a Gaussian mixture model truncated to
a union of rectangular regions and fitting a categorical Generalized Linear Model (GLM) via an
independent binary approximation demonstrate the utility of our approach.

1. Introduction

Suppose we observe the random variables Yi
i.i.d.∼ G for i = 1, . . . , n, where G is an unknown

probability distribution on Y . Suppose further that we wish to model our observations as Yi
i.i.d.∼ Fθ,

where {Fθ : θ ∈ Θ} is a family of probability distributions on Y indexed by parameter θ, and
where each Fθ has density fθ w.r.t. some σ-finite measure µ on the measurable space (Y,F) which
is continuous w.r.t θ for each y ∈ Y .1 When inference with the desired model Fθ is intractable
(often due to intractable normalizing constants; see Sec. 3 for examples), it can be convenient to
do approximate inference by artificially broadening the support of the likelihoods. In particular,
at inference time, we assume that Yi

i.i.d.∼ Hφ, where {Hφ : φ ∈ Φ} is a family of probability
distributions indexed by parameter φ on a space (Y∗,F∗) where Y∗ ⊋ Y,F∗ ⊋ F , where each
Hφ has density hφ w.r.t. some σ-finite measure ν which is continuous w.r.t φ for each y∗ ∈ Y∗, and

1In particular if µ is Lebesgue measure, then f becomes a probability density function (pdf) of an absolutely con-
tinuous random variable. If µ is the counting measure, then f becomes a probability mass function (pmf) of a discrete
random variable.
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where
supp(Hφ) ⊋ supp(Fθ), ∀φ ∈ Φ, θ ∈ Θ. (Assumption 1) (1.0.1)

In a typical application, we hope that the observation model is well-specified (i.e. that Fθ = G for
some θ), but we recognize that this is unlikely. However, we can typically have more confidence in
the more innocuous assumption of well-specified support

supp(Fθ) = supp(G), ∀θ ∈ Θ (Assumption 2) (1.0.2)
In tandem, Assumptions 1 and 2 guarantee that Hφ ∕= G, and in particular that supp(Hφ) ⊋
supp(G), for each φ. Hence, by using H to model the random variable Y , we are introducing
intentional model misspecification; we intentionally do inference with a model that has inflated
support. In order to construct a valid approximate inference procedure, we require the pair (Fθ, Hφ)
to satisfy the dominated likelihood assumption

hφ(y) ≤ fφ(y) ∀ y ∈ Y,φ ∈ Φ. (Assumption 3) (1.0.3)
In particular, Φ ⊆ Θ, so we may substitute parameters from Φ into Θ. Since we do inference with
the dominated approximate likelihood H to get approximate inference for the target likelihood F ,
we refer to our strategy as dominated likelihood approximation (DLA).

2. Methods

Here we detail and justify doing approximate statistical inference on a target observation model
F via inference on a dominated observation model H with broader support. In the frequentist
paradigm (Sec. 2.1), we can substitute the maximum likelihood parameters for H into F . In the
Bayesian paradigm (Sec. 2.2), we can treat the posterior under likelihood H as an approximate
posterior under likelihood F . We can also treat a variational approximate posterior under likelihood
H as a doubly approximate posterior under likelihood F .

2.1. Maximum Likelihood

Although the true distribution governing Y is G, we can define the quasi-maximum likelihood es-
timator (QMLE) (White, 1982) for both our target observation model F and our support-broadened
observation model H via:

!θn ≜ argmax
θ∈Θ

"n
i=1 log fθ(Yi)

n
, !φn ≜ argmax

φ∈Φ

"n
i=1 log hφ(Yi)

n

In the following, we justify the utility of both (1) H!φn
and (2) F!φn

as reasonable models for the
random variable Y , even though φ indexes a distribution H that has artificially and incorrectly
broadened support, i.e. supp(H) ⊋ supp(G). Model (2) is especially useful; we do inference
(QMLE) with a model H that has artificially inflated support, and then substitute the learned pa-
rameter into the model F which generates observations with the correct support.

1. Justification for H!φn
. Here we sketch the justification; see Sec. B for details. The justifica-

tion follows from known properties of the QMLE (White, 1982). By definition, we have that the
quasi-MLE !φn maximizes Ln(h) ≜ 1

n

"n
i=1 log hφ(Yi). By the Strong Law of Large Numbers,

limn→∞ Ln(h) = EG[log hφ(Y )] almost surely with respect to G. Hence, with probability 1, !φn

asymptotically maximizes EG[log hφ(Y )], and so asymptotically minimizes KL
#
G

$$$$ Hφ

%
. In our

case, KL
#
G

$$$$ Hφ

%
is well-defined even though supp(H) ⊋ supp(G), because the KL-divergence
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assigns zero probability mass to any points in supp(H) \ supp(G). Thus, performing maximum
likelihood with the support-broadened model H is reasonable because the procedure asymptotically
minimizes KL

#
G

$$$$ Hφ

%
.

2. Justification for F!φn
. We have

hφ(y) ≤ fφ(y) ∀ y ∈ Y,φ ∈ Φ Assumption 3

=⇒ EG[log hφ(Y )] < EG[log fφ(Y )] Monotonicity, Assumption 1

⇐⇒ EG[log g(Y )]− EG[log f(Y )] < EG[log g(Y )]− E[log hφ(Y )] algebra

⇐⇒ KL
#
G

$$$$ Fφ

%
< KL

#
G

$$$$ Hφ

%
def. KL (2.1.1)

where for simplicity we have assumed that G has density g. Now by item 1, we have that !φn asymp-
totically minimizes KL

#
G

$$$$ Hφ

%
, which by Eq. (2.1.1) is an upper bound on KL

#
G

$$$$ Fφ

%
. Hence,

substituting the quasi-MLE !φn from family H into family F to obtain model F!φn
can be justified

since !φn is the parameter in Φ which (asymptotically) minimizes an upper bound on KL
#
G

$$$$ Fφ

%
.

Discrepancy induced by the dominated likelihood approximation. From Eq. (2.1.1), we see
that a discrepancy induced by support-broadening – more specifically, an asymptotic discrepancy
between the objective functions whose optimizations produce the approximate (DLA) model F!φn

rather than the target (quasi) MLE model F!θn – is given by

D(Fφ, Hφ) ≜ KL
#
G

$$$$ Hφ

%
− KL

#
G

$$$$ Fφ

%
= EG[log fφ(Y )]− EG[log hφ(Y )] ≥ 0 (2.1.2)

If the target model is well-specified (i.e. G = F ), then D(Fφ, Hφ) = KL
#
Fφ

$$$$ Hφ

%
. If Fφ is a

truncation of Hφ (i.e. fφ = hφ/Zφ, where the normalizing constant Zφ gives the probability mass
that Hφ assigns to some truncation region), then D(Fφ, Hφ) = − logZφ. For an application of this
discrepancy, see Sec. D.2.

2.2. Bayesian inference

We begin with a non-asymptotic justification for Bayesian inference with DLA. We then asymptoti-
cally relate Bayesian DLA to frequentist DLA.

Justification for approximate Bayesian inference via dominated likelihoods. Given a prior
distribution π on Φ, we obtain the following marginal density relationship from Assumption 3:

pF (y) ≜
&

Φ
fφ(y)π(dφ) ≥

&

Φ
hφ(y)π(dφ) ≜ pH(y)

where we have used the same prior π on both Φ and Θ, using the implication from Assumption 3
that Φ ⊆ Θ. Hence, for any probability distribution Q on Φ within some chosen family Q, we have

log pF (y) ≥ log pH(y) ≥ ELBOH(Q) (2.2.1)

where ELBOH(Q) ≜ EQ[log h(y | φ)] − KL
#
Q

$$$$ π
%

is the evidence lower bound, a traditional
lower bound on the log marginal likelihood of a Bayesian model (Blei et al., 2017). In other words,
variational inference using the support-broadened likelihood H , which finds Q ∈ Q to maximize
ELBOH(Q), can be understood to maximize both a lower bound on (the logarithm of) the marginal
density of the support-broadened observation model pH as well as the target observation model pF .
This justifies DLA in the context of variational Bayesian inference. Moreover, as is well-known,
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when the family Q is unconstrained, ELBOH(Q) is optimized by the true posterior πn
H , defined as

the posterior distribution on Φ after observing Y1, . . . , Yn when assuming the observation model H .
Thus, Eq. (2.2.1) also says that exact Bayesian inference for computing the posterior on Φ using
H can be seen as producing the probability distribution on Φ which maximizes a lower bound on
pF . This observation justifies Markov chain Monte Carlo (MCMC) sampling under likelihood H ,
because its estimated posterior converges in distribution to the exact posterior under likelihood H .

Perturbation to posterior concentration. Define πn
D as the posterior distribution on Φ after ob-

serving Y1, . . . , Yn when assuming a generic observation model D with density d. Then Φ0 ⊂ Φ is
called an asymptotic carrier for Φ if for any open set U containing Φ0, limn→∞ πn

D(U) = 1 almost
surely with respect to G. Berk (1966) shows that under mild conditions, an asymptotic carrier for
Φ is given by

Φ0 = {φ∗ ∈ Φ : φ∗ = argmax
φ∈Φ

EG[log d(Y | φ)]} (2.2.2)

Since EG[log d(Y |φ)] is maximized when D = G, the set Φ0 is precisely those φ ∈ Φ that minimize
KL

#
G

$$$$ D
%
. Therefore, we can also write

Φ0 = {φ∗ ∈ Φ : φ∗ = argmin
φ∈Φ

KL
#
G

$$$$ D
%
}. (2.2.3)

So as n increases, the Bayesian posterior concentrates its support on regions of parameter space
given by the limiting values of the QMLE. Thus, when choosing to use a dominated observation
model D = Hφ, we can apply the argument of Eq. (2.1.1) to find that the posterior πn

H concentrates
on regions of parameter space Φ that minimize an upper bound on KL

#
G

$$$$ Fφ

%
. This observation

justifies the continued relevance in the Bayesian setting of the discrepancy D(F,H) in Eq. (2.1.2)
to quantify the error induced by DLA; D(F,H) gives the amount of perturbation that DLA imposes
upon the objective function which is maximized by the asymptotic carrier.

3. Case Study 1: Truncated mixtures of Gaussians for geolocation data

Geolocation data often have constrained support due to water obstacles, political boundaries, or
other issues. While using truncated distributions is possible, fitting these in practice may not be
easy. Consider a bivariate Normal distribution with truncated support to one rectangular region Y
with bounds a, b such that y1 ∈ [a1, b1], y2 ∈ [a2, b2]. Estimating the Gaussian parameters µ,Σ of
such truncated Gaussians is considered quite difficult (Wilhelm and Manjunath, 2010), solvable via
Newton-Raphson steps (Zeng and Gui, 2021) or other iterative methods. In contrast, untruncated
Gaussian parameters can be estimated in closed-form by well-known textbook equations.

In this case study, we apply our DLA framework to exploit fast estimation of unconstrained Gaus-
sians for density modeling of human geolocation data. We study Cho et al. (2011)’s open dataset of
user “check-ins” to a website called Gowalla, focusing on Southern California as in Lichman and
Smyth (2014). Each observation yi represents the latitude, longitude location of a check-in event.
Our large training set (N=67891) is illustrated in Fig. 1. Given such data, we wish to fit a density
model in order to predict the locations of new events from new users. We divide the study area into a
coarse 20x20 grid of rectangular regions, marking each as either in-bounds (green) or out-of-bounds
(blue or red). Ideally, we could use truncated Gaussians to focus on land (green) and ignore water
(blue). We thus set our target likelihood f to a mixture of union-of-rectangles truncated Gaussians
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method train log f
CAVI on h 0.536
SGD on h 0.514
SGD on f 0.523

test log f
CAVI on h 0.515
SGD on h 0.489
SGD on f 0.469

Figure 1: Application: GMMs for geolocations in southern CA. Left: Ideal model f truncates to the union
of green rectangles (land area). Tractable model h (unconstrained mixture of Gaussians) allocates mass to
water (blue) or out-of-bounds (red). Ellipses show the 99% high-density-areas of 4 Gaussian clusters fit to
data using our CAVI approach. Right: Comparison of our approach to directly maximizing ideal likelihood f :
DLA yields comparable models in far less time. Table reports each method’s mean log f over all examples.

with K clusters (for details, see App. C), and set tractable h to an untruncated Gaussian mixture:
f(y) =

"K
k=1 πkTruncNormPDFa,b(y|µk,Σk) h(y) =

"K
k=1 πkNormPDF(y|µk,Σk). (3.0.1)

For fixed K, Assumption 3 holds: f(y|φ) > h(y|φ) for all parameters φ (all valid frequencies π,
means µ, and covariances Σ) as well as all geolocations y in our truncated region Y , because by
construction f(y|φ) = 1

Za,b(φ)
h(y|φ)[y ∈ Y], where Za,b(φ) < 1 (defined in Eq. (C.0.4)) is the

probability mass that h allocates to the union-of-rectangular regions defined by bound vectors a, b.

We consider 3 strategies to estimate φ (details in App. C.2). First, maximum likelihood estimation
that optimizes either f or h directly via stochastic gradient descent (SGD) using JAX for automatic
differentiation (Bradbury et al., 2018). SGD on f requires an expensive bespoke implementation of
Za,b(φ), which we must call at each iteration. Second, we fit φ by maximizing a lower bound on
log h via coordinate ascent variational inference (CAVI). We use well-known closed-form proce-
dures for GMMs available in an off-the-shelf package (Hughes and Sudderth, 2014). Fig. 1 shows
that our DLA approach via either SGD or CAVI delivers parameters φ that reach competitive like-
lihood values far faster than direct pursuit of f (less than 30 seconds for CAVI vs. over an hour for
SGD on f ). We emphasize CAVI’s gains require no customized code for training, because our theory
justifies using existing fast routines for unconstrained GMMs. In a heldout likelihood assessment,
our “train on h then plug φ into f” strategies do slightly better than direct SGD on f .

4. Case Study 2: Categorical Generalized Linear Models for computer process starts

Bayesian inference with categorical generalized linear models (GLMs) is surprisingly difficult to
scale to large datasets (Wojnowicz et al., 2022). For instance, coordinate ascent variational inference
(CAVI) (Blei et al., 2017) with multi-logit (a.k.a. softmax) regression faces an expected log-sum-exp
term, a notorious blocker to closed-form CAVI (Braun and McAuliffe, 2010; Wang and Blei, 2013).
The problematic term is distinct to the multi-class case; it does not appear for binary regression
models (e.g. logistic regression). This raises the question: is it possible to use binary regression
models to approximate the posterior from a categorical regression model?

Motivated by this question, Wojnowicz et al. (2022) define categorical-from-binary (CB) models, a
new class of categorical GLMs that are constructed from independent binary (IB) models (products
of binary-outcome regression models, such as logistic regressions). Interpreting categorical vari-
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ables as one-hot encoded vectors, IB models have broadened support (Assumption 1) relative to CB
models: IB models have support on K-bit space, a proper superset of one-hot space where CB mod-
els are supported. Moreover, CB models dominate IB models (in the strict sense of Assumption 3’;
see Eq. (A.0.1) and Sec. D.1). Hence, the DLA framework applies. In particular, the results of Sec. 2
suggest that CAVI with IB models (IB-CAVI), an inference approach which is straightforward and
fast, provides a coherent approximation to the true posterior of the CB models.

Figure 2: Application: Scalable Bayesian Categorical GLM for predicting computer process starts.
Bayesian inference methods are compared on a real dataset with K = 1, 553 categories, 1, 553 covariates, and
17, 724 instances. Prediction quality is measured by holdout log likelihood (left) and accuracy (middle). For
ADVI, we try the learning rates {0.01, 0.1, 1.0, 10, 100} recommended by Kucukelbir et al. (2017). Figure
reproduced from Wojnowicz et al. (2022).

In support of this claim, Fig. 2 compares various Bayesian methods for fitting categorical regres-
sions w.r.t. performance on heldout test data as a function of training time. In particular, a DLA ap-
proach (a CB-Probit model, estimated with IB-CAVI) is compared to various well-established vari-
ational inference procedures for estimating the most conventional categorical GLM, softmax re-
gression. In particular, the softmax regression is estimated using automatic differentiation vari-
ational inference (ADVI) (Kucukelbir et al., 2017) as well as two “gold standard” MCMC sam-
plers: the No U-Turn Sampler (NUTS) (Hoffman et al., 2014) and a Gibbs sampler available via
Pòlya-Gamma augmentation (Polson et al., 2013). Overall, Fig. 2 shows that the DLA approach
(CB-Probit+IB-CAVI, plotted in red) delivers indistinguishable accuracy and little-to-no cost in log
likelihood compared to alternative methods for categorical data, while requiring far less time to get
there. Moreover, DLA gives updates which are exact and optimal, and unlike alternatives does not
require correctly choosing a learning rate (as with ADVI) or tuning period length (as with NUTS).

5. Discussion

Our support-broadening procedure applies in principle to any modeling problem and to most com-
mon inference procedures, so long as a dominated/dominating likelihood pair can be found. We
emphasize that two different use cases exist. First, given a fixed target model, one may specify a
dominated approximation. Alternatively, given a fixed tractable model, one may specify a domi-
nating target model. When the target model is a truncated model, a dominated likelihood can be
found simply by removing the truncation, as we saw in Sec. 3. However, the pair need not be re-
lated through truncation. For instance, the CBM categorical regression models described Sec. D or
in Wojnowicz et al. (2022) dominate tractable independent binary models, but are not truncations
of them. Although specialized approaches can likely provide better approximations in specific set-
tings, our procedure yields a simple tool for quickly and easily obtaining approximate inference in
a wide range of settings, including when scalability is a concern.
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Appendix A. Strict Dominated Likelihood Assumption

Note that equality cannot be attained in Eq. (1.0.3) for all y ∈ Y; by Assumption 1, for any pa-
rameters (φ, θ) ∈ Φ × Θ, there must be some A ∈ F such that 0 < Hφ(A) < Fθ(A). Hence, in
the most straightforward application of the framework, one imposes a strict dominated likelihood
assumption

hφ(y) < fφ(y) ∀ y ∈ Y,φ ∈ Φ. (Assumption 3’) (A.0.1)
Indeed, since probability densities must satisfy

'
Y fθ(y)µ(dy) =

'
Y∗ hφ(y) ν(dy) = 1, Assump-

tion 3’ implies Assumption 1.

Appendix B. Quasi Maximum Likelihood Estimation

B.1. Existence of the quasi maximum likelihood estimator (QMLE)

Here we state and verify the assumptions given by (White, 1982) pertaining to the existence of the
QMLE φ̂n. These assumptions are standard in statistical theory when establishing properties such
as consistency of estimators.
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Assumption B1.1: The independent random variables Yi for i ∈ {1, . . . , N} have a common
joint distribution function G on Ω, a measurable Euclidean space, with Radon-Nikodym derivative
g = dG

dν .

Verification of B1.1: The first assumption simply defines the space Ω and g = dG
dν as the Radon-

Nikodym derivative of a distribution function G on Ω. In most scenarios, we do not know the
underlying true distribution G. In Section 1, the setting is a measurable space (Y,H) where G is
a probability distribution on H with Radon-Nikodym derivative g = dG

dν . Thus A1 is met. When
we have access to the underlying true distribution such as when generating data for the categorical
GLM experiments in Section 3, this assumption is verified as any probability mass function gives a
Radon-Nikodym derivative with respect to the counting measure.

Assumption B2.2: The family of distribution functions {Fθ : θ ∈ Θ} and {Hφ : φ ∈ Φ} has
Radon-Nikodym derivatives fθ = dFθ

dν and gφ =
dHφ

dν which are measurable in x for every θ ∈ Θ
and φ ∈ Φ and continuous in θ and φ for every x ∈ Ω. The parameter spaces Θ and Φ are compact
subsets of Euclidean space.

Verification of B2.2: The second assumption requires the existence of Radon-Nikodym derivatives
for the distributions Fθ and Hψ and that the Radon-Nikodym derivatives were continuous with re-
spect their parameters for all y ∈ Y . We assumed this was the case in Section 1. This is met in prac-
tice and in our experiments: any probability measure that is absolutely continuous (has a probability
density function) or discrete (has a probability mass function) automatically has a Radon-Nikodym
derivative with respect to the Lebesgue and counting measure, respectively. This Radon-Nikodym
derivative is automatically measurable.

This assumption also requires that the parameter space Θ is compact, which on its face does not hold
in practice. For example, we generally do not restrict the space of the mean parameter µ ∈ R of a
normal distribution N(µ,σ2) when estimating it using maximum likelihood; yet R is not compact.
To address this technical issue, it is standard practice to compactify the parameter spaces Θ and Ψ if
necessary, wherein points are added to the spaces so as to make them compact. See Bahadur (1971),
Kiefer and Wolfowitz (1956), and White (1981) for a discussion.

Theorem (White, 1982) - Existence of a QMLE: Given assumptions A1 and A2, there exists a
measurable QMLE.

Verification of (White, 1982) - Existence of a QMLE: Since assumptions A1 and A2 are met, we
conclude that the QMLEs θ̂n and φ̂n for both our observation model F and our support-broadened
observation model H from Sec. 2.1 exist.

B.2. Convergence of QMLE and Justification for Hφ̂n

Here we detail the argument laid out in Section 2.1 to justify Hφ̂n
as a reasonable model despite the

support-inflation. The argument in three steps is as follows:

1. φ̂n maximizes Ln(h) ≜ 1
n

"n
i=1 log hφ(Yi) is the definition of the QMLE.

2. limn→∞ Ln(h) = EG[log hφ(Y )] is known as Mickey’s Theorem (Theorem 2 in Jennrich
(1969) and p. 40 in Mickey (1963) contain two proofs) and is a Law of Large Numbers-type
result. In fact, we have the stronger result that this convergence is uniform in φ.
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Theorem (Jennrich, 1969) - Convergence of Quasi-Likelihoods: Let q be a function on
Ω×Θ such that q(z, θ) is a continuous function of θ for each z and a measurable function of
z for each θ. Suppose also that |q(z, θ)| ≤ m(z) for all z and θ, where m is integrable with
respect to distribution G on Ω. If Z1, Z2, . . . is a random sample from G, then Qn(z, θ) ≜
1
n

"n
i=1 q(zi, θ) converges to Q(θ) ≜

'
q(z, θ)dG(z) uniformly for all θ ∈ Θ and almost

every sequence {Zi}.

Verification of Theorem (Jennrich, 1969) - Convergence of Quasi-Likelihoods: The func-
tion q(z, θ) in our application is the quasi log-likelihood for the support-broadened model
so that we have the notational correspondence z ↔ y, θ ↔ φ, and therefore the correspon-
dence q(z, θ) ↔ log hφ(y) and Qn(z, θ) ↔ Ln(h). The only item to verify here is the
condition that q(z, θ) is bounded by a function m(z) that is integrable with respect to the true
data-generating distribution G, which is usually unknown in practice. Therefore, this type of
condition is often added as an assumption from the outset as in White (1981). However, in
our application to categorical GLMs via an independent binary model, we can at least ver-
ify this assumption in the case that the covariates xi are uniformly distributed. Recall from
Wojnowicz et al. (2022), that the support-broadened model is an independent binary model
whose likelihood for a K-bit observation !yi ∈ {0, 1}K for i = 1, . . . , n is:

hIB(!yi | !B)=

K(

k=1

C(!ηik)!yik
)
1− C(!ηik)

*1−!yik

In the above, C is an arbitrary cumulative distribution function, where each linear predictor
!ηik = xT

i
!βk is formed from known covariates xi ∈ RM and unknown parameters !βk ∈

RM , and where !B = (!β1, ...,
!βK) ∈ RM×K is a matrix of weights for each combination

of covariate and category. We drop the hat accent and use the notation yi for categorical
yi ∈ {1, . . . ,K} so that eyi is a one-hot vector corresponding to a unique category. See also
Sec. D for a discussion of the IB and CB models. In this context, we have the correspondence
z ↔ y ↔ !y and θ ↔ φ ↔ !B and q(z, θ) ↔ log hφ(y) ↔ log hIB(!y = ey | !B). Therefore,
we look for an integrable function m(·) that bounds | log hIB(!y = ey | !B)|. We have:

| log hIB(!y = ey | !B)| = |
K+

k=1

log[C(xT !βk)(1− C(xT !βk))]|

≤
K+

k=1

| log[C(xT !βk)(1− C(xT !βk))]|

≤
K+

k=1

| log[C(xT !βk)]|

Now, the inverse link function C(·) ∈ (0, 1) so that | logC(·)| ∈ (0,∞). Now, | logC(·)| < 1
on (e−1, 1) so we are only concerned with bounding it by an integrable function on (0, e−1).
This is accomplished with the function m(·) = | logC2(·)|, which bounds | logC(·)| from
above and is integrable with respect to Lebesgue despite growing rapidly close to zero.

3. With probability 1, φ̂n asymptotically maximizes EG[log hφ(Y )] and so asymptotically min-
imizes KL

#
G

$$$$ Hφ

%
is Lemma 3 from Amemiya (1973) or in a slightly more general form as

10
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Lemma 2.2 from White (1980). We state Lemma 3 from Amemiya (1973) and for complete-
ness reproduce the proof.

Theorem (Amemiya, 1973) - Convergence of QMLE to a Minimizer of Cross-Entropy:
Let Qn(z, θ) be a measurable function on a measurable space Ω and for each z ∈ Ω a contin-
uous function for θ in a compact set Θ. Then there exists a measurable function θ̂n such that
for all z ∈ Ω:

Qn(z, θ̂n) = sup
θ∈Θ

Qn(z, θ)

If Qn(z, θ) converges to Q(θ) a.e. uniformly for all θ ∈ Θ, and if Q(θ) has a unique maxi-
mum at θ0 ∈ Θ, then θ̂n converges to θ0 a.e.

Proof: That there exists a measurable function θ̂n is Lemma 2 from (Jennrich, 1969). Let O be
an open neighborhood around θ0. Then Ō, the complement of O in Θ, is compact. Therefore,
maxθ∈Ō Q(θ) exists. Denote ε = Q(θ0) − maxθ∈Ō Q(θ). Then |Qn(z, θ) − Q(θ)| < ε/2

implies θ̂n ∈ O. Therefore, θ̂n converges to θ0 a.e.

Verification of (Amemiya, 1973) - Convergence of QMLE to a Minimizer of Cross-
Entropy:

Like above, the function Qn(z, θ) corresponds to the quasi-likelihood function via the corre-
spondence Ln(h). The first statement of the theorem guarantees the existence of a QMLE,
which is a restatement of B.1. By 2, we have that Ln(h) converges to EG[log hφ] uniformly
in φ. This limit is the negative cross-entropy H(·, ·) of Hφ relative to G: H(G,Hφ) ≜
−EG[log hφ(Y )]. Clearly, maximizing the negative cross-entropy minimizes the cross-entropy,
which in turn minimizes the KL

#
G

$$$$ Hφ

%
via the relation: H(G,Hφ) = H(G,G) +

KL
#
G

$$$$ Hφ

%
. Therefore, if the cross-entropy has an identifiably unique minimum φ∗ ≜

argminφ∈ΦEG[log hφ(Y )] = argminφ∈Φ KL
#
G

$$$$ Hφ

%
, we have convergence of the QMLE

to a minimizer of KL
#
G

$$$$ Hφ

%
:

φ̂n
a.s.−−→ φ∗

It is shown in Wojnowicz et al. (2022) that the CB models are non-identifiable at least in
the intercepts-only setting. One route to rectify the issue of non-identifiability is a technical
topological argument that involves passing to the quotient topology of the parameter space
Redner (1981) wherein the set of identifiable parameters are gathered into an equivalence
class. In this setting, the maximum likelihood estimator is indeed consistent estimator for the
true parameter of interest. However, Wojnowicz et al. (2022) also showed that the IB models
are globally identifiable, at least in the intercepts-only setting. Thus, since the IB model is the
support-inflated model on which we do QMLE, the identifiability condition on the minimizer
φ∗ is satisfied in the intercepts-only setting.

B.3. Bayesian Inference and Perturbation to Posterior Concentration

The justification for Fφ̂n
laid out in the second half of Section 2.2 is based on a classic Bayesian

consistency result laid out in (Berk, 1966). This result guarantees a Bayesian formulation of the

11
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KL
#
G

$$$$ Fφ

%
upper-bound minimization and asymptotic discrepancy results in 2.1: when using a

dominated observation model the posterior πn
H concentrates on regions of parameter space that min-

imize KL
#
G

$$$$ Hφ

%
. Recall the definition of the asymptotic carrier: Φ0 ⊂ Φ is called an asymptotic

carrier for Φ if for any open set U containing Φ0, limn→∞ πn
D(U) = 1 [G].

Notation: In the notation below from Berk (1966), f(·|θ) is a family of densities that are used to
model i.i.d {Zi} which are drawn from the distribution G. It is not assumed that G correspond
to any of the densities f(·|θ). The parameter θ belongs to parameter space Θ, a Borel subset of a
complete metric space. The densities f(·|θ) are with respect to some σ-finite measure on range Z.
Furthermore, π denote a prior distribution on the Borel subsets of Θ and πk denotes the posterior
distribution of the parameter given Z1, . . . , Zn. Therefore, the probability that the parameter θ ∈ A,
where A is a Borel subset of Θ is given by:

πkA =

'
A

,n
i=1 f(Zi | θ)dπ(θ)'

Θ

,n
i=1 f(Zi | θ)dπ(θ)

Berk (1966) applies a modification if necessary to πkA, noting that it remains valid if the density
f(·|θ) is substituted with u(z|θ) ≜ g(z)f(z|θ), where g is some positive function almost surely with
respect to G. For example, the assumptions below can be less restrictive if u(·|θ) = f(·|θ)/f(·|θ0)
where θ0 denotes the “true value" of the parameter of interest. Berk (1966) assumes that an appro-
priate u(·|θ) has been chosen. Lastly, we let H̄n = 1

n

"n
i=1H(Zi|θ), where H(·|θ) = log u(·|θ). In

our DLA framework, f(·|θ) above could be either of the misspecified models fθ or hφ. Our interest
is in its application to the support-broadened model hφ which is easier to do inference on.

Assumption B3.1: f(z|θ) is measurable jointly in z and θ; for almost every z, f(z|·) is continuous
in θ, at all θ ∈ Θ.

Interpretation and Verification of B3.1: This is a standard measurability and continuity in param-
eters assumption that we have assumed from the outset in Section 1.

Assumption B3.2: For all θ ∈ Θ, G{z : f(z|θ) > 0} = 1.

Interpretation and Verification of B3.2: (Berk, 1966) states that this assumption avoids situations
where we obtain realizations of the random variables {Zi} for which the posterior may be undefined
on certain subsets A ⊂ Θ and that this is not a restrictive assumption. In the case where it does
not hold, it is possible to rectify this by constructing a sequence of sets Ai such that

-
i∈I Ai = A

where G[limk→∞ πkAi = 0] = 1. The true data generating distribution G is unknown, so this can
added as an assumption from the outset.

Assumption B3.3: For every θ ∈ Θ, there is an open neighborhood U of θ such that:&

U
||H(Z|·)||∞π(dθ) < ∞

Interpretation and Verification of B3.3: This together with B4 are boundedness conditions so that
the dominated convergence theorem can be applied in Berk’s proof of the theorem below. Given that
we have the freedom to choose u(·|θ) and the prior distribution π, we can control ||H(Z|·)||∞ by
setting u(·|θ) = f(·|θ)/f(·|θ0) and adjusting π to de-emphasize regions of parameter space where
||H(Z|·)||∞ may be unbounded.

12
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Assumption B3.4: There is an integer p > 0 such that for every real number r there is a compact
subset D ⊂ Θ such that: &

D
sup H̄p ≤ r

Interpretation and Verification of B3.4: Again, this together with B3 are boundendess conditions
so that the dominated convergence theorem can be applied. As stated in Berk (1966), in the case
of a univariate normal with mean θ and unit variance and setting u(·|θ) = f(·|θ), this assumption
requires a second finite moment EZ2 < ∞. But if one chooses u(z|θ) = f(z|θ)/f(z|0), this can
be shown to reduce to E|Z| < ∞.

Theorem (Berk, 1966) - Concentration of Posterior under Misspecification: Suppose a model
for the random variables {Zi} specifies they are i.i.d. with one of densities f(·|θ), where the range,
Θ, is a Borel subset of a complete separable metric space and f(·|θ) are densities with respect to a
fixed σ-finite measure on range Z. Let π be a prior distribution on the Borel subsets of Θ and let πn
be the posterior distribution of θ given Z1, . . . , Zn. If the {Zi} are in fact distributed according to
a distribution G, and assumptions (B3.1)-(B3.4) hold, then πk is almost surely [G] asymptotically
carried on the asymptotic carrier.

Appendix C. Supplementary material on Union-of-Rectangle Truncated GMMs

We define a Gaussian mixture model truncated to a union of rectangular regions. Assume the
entire space R2 is divided into an infinite grid of non-overlapping rectangles. A finite number of
rectangles R is selected as the truncation region. Each one is indexed by integer r, and has lower
bounds ar = [a1r, a2r] and upper bound br = [b1r, b2r] such that an observed 2-dimensional vector
y is in the rectangle if y1 ∈ [a1r, b1r] and y2 ∈ [a2r, b2r]. We represent the entire truncation region
as the union of the selected rectangles, with bounds a = {a1, . . . aR} and b = {b1, b2, . . . bR}.

The probability mass Zr that a GMM allocates to one rectangle r can be defined as

Zar,br =

&

y∈[ar,br]

K+

k=1

πkNormPDF(y|µk,Σk)dy (C.0.1)

=

K+

k=1

πk

&

y∈[ar,br]
NormPDF(y|µk,Σk)dy (C.0.2)

=

K+

k=1

πk(Fk(b1r, b2r)− Fk(b1r, a2r)− Fk(a1r, b2r) + Fk(a1r, a2r)) (C.0.3)

where Fk is the multivariate normal CDF under mean µk and covariance Σk. Each CDF evalu-
ation computes the mass assigned to the rectangle whose lower corner is (−∞,−∞) and whose
upper right corner has the provided coordinates. The addition and subtraction handles taking the
differences of such larger rectangles to compute the area of the desired rectangle. CDF evaluations
for fixed parameters are rapid, and can be cached if needed for multiple computations (multiple
rectangles that share some boundary corners).

13
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The overall probability mass assigned to the union of R rectangles is simply

Za,b(φ) =

R+

r=1

Zar,br (C.0.4)

As long as the rectangles do not cover all of R2, we know that Z < 1.

C.1. Gowalla data preprocessing

We extract geolocation records from the Gowalla dataset that fall within a rectangular area of south-
ern California, with longitude in (-118.825, -116.675) and latitude in (33.14, 34.86). We then keep
only records for individual users that are spaced at least 6 hours apart (to avoid too much time de-
pendence), then only keep users with at least 20 observations. We divide data by user so that each
user’s records belong to one of train/valid/test. 80% of users are allocated to training (at random),
the rest split equally between validation and test. We have 67,925 records in train, 8,375 records
in the test set. We did not use any validation set. Very few records had locations over water, likely
due to boating, geolocation errors, or people visiting some of the islands off the coast. We removed
these for simplicity, but note that our union of rectangle approach could easily handle islands.

C.2. Parameter estimation for Union-of-Rectangle Truncated GMMs

All code for parameter estimation is available here https://github.com/tufts-ml/gmm_
truncated_to_rectangles.

To ease computation, for all experiments, we parameterized each component’s covariance Σk as
a diagonal matrix. While our CAVI procedure could have handled full-rank covariance matrices
easily with readily-available off-the-shelf procedures, we chose to focus on diagonal covariance to
avoid the expense of maintaining a valid positive definite matrix during stochastic gradient descent.

For maximum likelihood estimation applied directly to either the ideal target f or tractable h, we
implement the calculation of h and f , including normalization term Za,b defined above, in Python
using the JAX automatic differentiation library (Bradbury et al., 2018). JAX allows computing
the gradients with respect to parameters φ = (π, µ,Σ) without needing to derive the gradient.
We pursue stochastic gradient ascent (aka steepest ascent) to maximize each objective (log f or
log h). To handle constrained parameters (frequencies π that must live in the probability simplex,
diagonal covariances Σ that must remain positive), we use methods described here2. We used
K = 4 components, a batch size of 6000 and selected the best learning rate (in terms of training
performance) from 0.0033, 0.0100, 0.0333, 0.1000, 0.3333. We spent about 10 hours of human
effort on this implementation (verifying correctness, etc.). Each training run requires several hours
of compute on a modern cluster (using 3 cores each at 3.0 GHz). We expect further effort could
make this code more efficient, especially our code for computing Z but it represents an adequate
prototype of what a capable researcher might do in a fast day or two of prototyping.

For an alternative estimation of φ using our DLA approach, we pursue off-the-shelf variational
coordinate ascent (CAVI) code available in the Bayesian nonparametrics for Python (BNPy) pack-
age (Hughes and Sudderth, 2014). We fit a GMM with K = 4 components (technically a Dirichlet
Process GMM, but the truncation level is held fixed at K = 4). Both the variational-E-step and

2https://www.cs.tufts.edu/cs/136/2023s/cp4.html#transform_to_unconstrained
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variational M-step leverage closed-form updates to cluster assignment probabilities and parameter
posteriors. Once fit, we use posterior means to get point estimates of φ = (π, µ,Σ). We spent about
an hour on this implementation, mostly writing the wrapper code to call the off-the-shelf routines on
our dataset and feeding the learned parameters φ into our implementation of likelihood f to make
results tables.

Appendix D. Supplementary material on Categorical-from-Binary (CB) models

Categorical-from-binary (CB) models (Wojnowicz et al., 2022) are categorical GLMs for which
independent binary (IB) models (products of binary-outcome regression models) naturally provide
a dominated likelihood (in the strict sense of Assumption 3’).

The the likelihood for K-bit observation !yi = (!yi1, . . . !yiK) ∈ {0, 1}K under an independent binary
(IB) model is

hIB(!yi | !B)=

K(

k=1

C(!ηik)!yik
)
1− C(!ηik)

*1−!yik , (D.0.1)

where C is an arbitrary cumulative distribution function, where each linear predictor !ηik = xT
i
!βk

is formed from known covariates xi ∈ RM and unknown parameters !βk ∈ RM , and where !B =
(!β1, ...,

!βK) ∈ RM×K is a matrix of weights for each combination of covariate and category.

A categorical-from-binary-via-conditioning (CBC) model assigns probabilities to categorical ob-
servations yi ∈ {1, . . . ,K} by conditioning the IB model on the event that the vector has exactly
one positive entry:

fCBC(yi=k | B) =

C(ηik)
(

j ∕=k

(1− C(ηij))

K+

ℓ=1

C(ηiℓ)
(

j ∕=ℓ

(1− C(ηij))

(D.0.2)

for categories k = 1, ...,K. Here, we distinguish parameters B and observations yi from the IB
case by dropping the hat accent.

A categorical-from-binary-via-marginalization (CBM) model produces category probabilities by
normalizing the marginal probabilities of success {C(ηik)}Kk=1 from an IB model:

fCBM(yi = k | B) =
C(ηik)"K
ℓ=1C(ηiℓ)

. (D.0.3)

for all categories k ∈ {1, . . . ,K}.

D.1. Applicability of the Dominated Likelihood Approximation Framework

Here we defend that IB models (D.0.1) give dominated likelihood approximations (DLA) to both
CBM (D.0.3) and CBC (D.0.2) models:
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1. By interpreting categorical variables as one-hot encoded vectors, we see that IB models have
broadened support (Assumption 1) relative to CB models.

G = true distn, Fθ = CB model one-hot space ⊂ K-bit space

Hφ = IB model K-bit space

2. CB models dominate IB models (in the strict sense of Assumption 3’; see Eq. (A.0.1)). CBC
models are truncations (of IB models, to one-hot encoded space), and hence satisfy the domi-
nated likelihood assumption trivially. CBM models satisfy the dominated likelihood assump-
tion as well, although not by truncation. For a proof, see Wojnowicz et al. (2022, Sec. B.3).

Hence, so long as the true data generating process is supported by categorical outcomes (Assump-
tion 2), the DLA framework essentially applies. There is, however, one caveat. In this paper, we
have presented the framework in terms of an i.i.d assumption on the observations, whereas GLMs
require a relaxed assumption of independence. We defer formal generalization of our framework to
the case of independent observations to a future development of this workshop paper.

D.2. Experiment: Assessing the quality of the dominated likelihood approximation

Eq. (2.1.2) provides what we might call an asymptotic objective discrepancy; that is, the asymptotic
discrepancy in objective function induced by DLA. What would be of greater interest, however, is
an expression of the modeling discrepancy, such as

KL
#
F!θ

$$$$ F!θDLA

%
(D.2.1)

where !θ is a parameter estimate obtained through some inference procedure (maximum likelihood,
MCMC posterior expectation, variational posterior expectation, etc.) applied to the target model F
and !θDLA is the parameter obtained by applying the same inference procedure in the context of a
dominated likelihood approximation. Eq. (D.2.1) is useful because it tells us the extent to which
DLA provides a good approximation to inference with the target model.

Unfortunately, we do not know how to compute the modeling approximation discrepancy of Eq. (D.2.1)
without performing inference with the target model F , for which inference is by assumption diffi-
cult to obtain. However, the asymptotic objective discrepancy of Eq. (2.1.2) is often much easier to
compute, or at least approximate via Monte Carlo sampling.

In this experiment, we investigate the extent to which the objective discrepancy can provide a proxy
for the modeling discrepancy. In particular, we focus on CBC models (Eq. (D.0.2)), which are
truncated IB models. When we approximate a CBC likelihood with an IB likelihood (representing
categories as one-hot vectors), the asymptotic discrepancy in the objective function for maximum
likelihood can be estimated by

!D(Fθ=φ, Hφ) ≜
1

n

n+

i=1

(− logZi), where Zi ≜
K+

ℓ=1

C(ηiℓ)
(

j ∕=ℓ

(1− C(ηij)) (D.2.2)

Here, Zi is the probability mass assigned by the IB model to the event that the i-th observation
is one-hot encoded.3 We investigate the information provided by this formula in the context of
variational inference, interpreting !θ as the variational posterior expectation.

3In the limiting case where the IB model assigns all its probability mass to the event that the i-th observation is
one-hot encoded, i.e. Zi = 1, we have − logZi = 0, and so the discrepancy for the i-th observation attains the minimum
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Method. We simulated categorical regression datasets following the procedure of Wojnowicz
et al. (2022, Sec G.1). In particular, we formed three collections of 36 simulated datasets gen-
erated from a softmax categorical GLM with K = 5 categorical outcomes and M = 5 covariates
(which along with the intercept gives P = K(M+1) = 30 parameters). Each collection of datasets
was defined by the number of observations (or examples), N , given as a multiple of the number of
predictors N ∈ {1P, 10P, 100P}. For each collection, datasets were generated with different levels
of category predictability (Wojnowicz et al., 2022, Sec. G.2).

The target model for inference F was a CBC-Probit likelihood with an isotropic Gaussian prior.
The dominated approximation H was given by an IB-Probit model (the product of binary probit
regressions). Inference for H was performed by a lightweight coordinate ascent variational infer-
ence (CAVI) algorithm given in Wojnowicz et al. (2022, Sec. D). Inference for F was performed by
automatic differentiation variational inference (ADVI) (Kucukelbir et al., 2017). In both cases, the
true parameter was approximated by the variational posterior expectation.

Results. Fig. 3 reveals that the computable estimate in Eq. (D.2.2) for the asymptotic objective
discrepancy provides a potentially useful proxy for the typically unknown modeling discrepancy of
Eq. (D.2.1). In particular, for a fixed number of observations, N , we find that the quality of the IB
approximation improves as the IB model assigns higher probability to one-hot space. In this way,
we can assess the quality of the approximation to the CBC model without ever fitting it. Moreover,
we see that the modeling discrepancy (along the y-axis) decreases as N increases. This relationship
is also predicted by the asymptotic objective discrepancy.

N = P N = 10P N = 100P

Figure 3: Application: When do independent binary models give good approximations to categorical
GLMs? Each panel summarizes results on multiple simulated categorical regression datasets where the
number of observations, N , is expressed as a multiple of the number of parameters P . The y-axis shows the
typically unknown modeling discrepancy of Eq. (D.2.1); in this case, it is the empirical mean KL divergence
from an independent binary (IB) approximation to a categorical-from-binary (CB) target model. The x-axis
shows a quantity related to the analytically computable estimate from Eq. (D.2.2) of the asymptotic objective
discrepancy; in this case, it is 1

N

!N
i=1 Zi, the empirical mean probability that the IB model assigns to one-

hot encoded space. We see that for fixed N , the estimated objective discrepancy serves as a proxy for the
modeling discrepancy. Moreover, the modeling discrepancy (along the y-axis) decreases as N increases.

value of Di = 0. In the limiting case where the IB model assigns none of its probability mass to the event that the i-th
observation is one-hot encoded, i.e. Zi = 0, we have − logZi = ∞, and so the discrepancy for the i-th observation
attains attains the maximum value of Di = ∞.
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