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ABSTRACT
Machine learning for healthcare researchers face challenges
to progress and reproducibility due to a lack of standard-
ized processing frameworks for public datasets. We present
MIMIC-Extract, an open source pipeline for transforming the
raw electronic health record (EHR) data of critical care pa-
tients from the publicly-available MIMIC-III database into
data structures that are directly usable in common time-
series prediction pipelines. MIMIC-Extract addresses three
challenges in making complex EHR data accessible to the
broader machine learning community. First, MIMIC-Extract
transforms raw vital sign and laboratory measurements into
usable hourly time series, performing essential steps such as
unit conversion, outlier handling, and aggregation of seman-
tically similar features to reduce missingness and improve ro-
bustness. Second, MIMIC-Extract extracts and makes predic-
tion of clinically-relevant targets possible, including outcomes
such as mortality and length-of-stay, as well as comprehensive
hourly intervention signals for ventilators, vasopressors, and
fluid therapies. Finally, the pipeline emphasizes reproducibil-
ity and is extensible to enable future research questions. We
demonstrate the pipeline’s effectiveness by developing several
benchmark tasks for outcome and intervention forecasting
and assessing the performance of competitive models.
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INTRODUCTION
Applying modern machine learning to observational health
data holds the potential to improve healthcare in many
ways, such as delivering better patient treatments, improving
hospital operations, and answering fundamental scientific
questions [8]. To realize this potential, there have been ef-
forts to make healthcare data available to credentialed re-
searchers with human subjects training. A widely-used public
data source is the Medical Information Mart for Intensive
Care (MIMIC-III) dataset [14], which makes available the
de-identified electronic health records (EHRs) of 53,423 pa-
tients admitted to critical care units at a Boston-area hospital
from 2001–2012. While MIMIC-III’s availability has catalyzed
many research studies, working with MIMIC-III data remains
technically challenging, which presents a barrier to entry. The
primary difficulties rest in the complexity of EHR data and
the myriad choices that must be made to extract a clinically-
relevant cohort for analysis. These same difficulties hinder
the reproducibility of studies that apply machine learning to
MIMIC-III data, because researchers develop code indepen-
dently to extract and preprocess task-appropriate cohorts.
The majority of papers do not share code used to extract
study-specific data [13], resulting in expensive yet redundant
efforts to build upon existing work and creating the potential
for hard-to-explain differences in results.

In this paper, we introduce MIMIC-Extract,1 an open
source pipeline to extract, preprocess, and represent data

1https://github.com/MLforHealth/MIMIC_Extract

https://doi.org/10.1145/3368555.3384469
https://doi.org/10.1145/3368555.3384469
https://doi.org/10.1145/3368555.3384469
https://github.com/MLforHealth/MIMIC_Extract
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Figure 1: Example data produced by MIMIC-Extract
to summarize a single subject’s stay in the inten-
sive care unit(ICU). Time evolves on the x-axis, and
all extracted time series are discretized into hourly
buckets. Mechanical Ventilation is an example inter-
vention with multi-hour continuous duration. Col-
loid bolus is an example of an intermittent fluids in-
tervention. All interventions are recorded as binary
indicators at each hour. Heart Rate is an example
of a frequent vital sign. Glucose is an example of an
infrequent lab measurement.

from MIMIC-III v1.4, including static demographic infor-
mation available at admission, time-varying vital signs and
laboratory measurements, time-varying intervention signals,
and static outcomes such as length-of-stay or mortality. Fig-
ure 1 gives a visual summary of the data we extract from
the observed records of an individual patient stay available
in MIMIC-III. Our principled approach yields a comprehen-
sive cohort of time-series data that is well-suited for several
clinically-meaningful prediction tasks — several of which
we profile in this paper — while simultaneously providing
flexibility in cohort selection and variable selection.

We intend this pipeline to serve as a foundation for both
benchmarking the state-of-the-art and enabling progress on
new research tasks. Several other recent works have developed,
in parallel, extraction pipelines and prediction benchmark
tasks for MIMIC-III data [12, 24, 26]. However, compared to
these we advance the field with three primary contributions:
• Robust Representations of Labs and Vitals Time

Series. The primary difficulty of using the raw MIMIC-
III data is the noisy nature of clincal data. We present
a comprehensive procedure designed with clinical validity
in mind to standardize units of measurement, detect and
correct outliers, and select a curated set of features that
reduce data missingness. Importantly, we offer data rep-
resentations that are resilient to concept drift over time,
by aggregating semantically similar raw features. The ro-
bustness of this “clinically aggregated” representation is
demonstrated by recent work on feature robustness in non-
stationary health records [22].
i

• Clinically Meaningful Interventions and Outcomes.
Our pipeline focuses on making hourly-observed treatment

signals available for several actionable critical care interven-
tions, including ventilation, vasopressors (for blood pressure
management), and fluid bolus therapies (for managing sep-
sis and other conditions). No other recent pipeline makes
interventions a primary focus. We also support several com-
mon outcomes of interest, such as mortality and length of
stay. We intentionally avoid tasks of questionable clinical
utility appearing in some prior works, such as diagnosis
billing code prediction, because they have poor diagnos-
tic value [1]. In later benchmark task design, we further
emphasize realistic settings such as predictions that occur
every hour rather than after a single 24-hour duration.
We are careful to include meaningful temporal gaps be-
tween measurement and outcome, in order to minimizes
label leakage and thus improve the utility of models in real
clinical deployment.

• Focus on Usability, Reproducibility, and Extensi-
bility. Finally, we have designed the entire pipeline with
usability and extensibility in mind. Our patient selection
criteria can be easily adjusted to support future research
questions, requiring changes to only keyword arguments
rather than source code. Extracted data can be read di-
rectly into a Pandas DataFrame [20] with appropriate data
typing, enabling immediate computational analysis. We
also provide Jupyter Notebooks [23] that demonstrate the
use of the data produced by our MIMIC-Extract pipeline
in benchmark prediction tasks, including steps for data
loading and preprocessing, and baseline model building.

We emphasize that our pipeline has been used as the
foundation for reproducing many recent machine learning
studies of MIMIC-III data [7, 9–11, 18, 22, 25, 27]. While
none of these released their own extraction code, they never-
theless utilized similar cohort selection and variable selection
processes.

The rest of this paper provides an overview of the extrac-
tion system design, a detailed comparison to other extraction
systems and their corresponding benchmark tasks, and a care-
ful analysis of several benchmark prediction tasks developed
using our pipeline to showcase its potential.

DATA PIPELINE OVERVIEW
Figure 2 summarizes the data extraction and processing steps
involved in MIMIC-Extract. From the MIMIC relational data-
base, SQL query results are processed to generate four output
tables. These tables, as summarized in Table 1, maintain the
time series nature of clinical data and also provide an aggre-
gated featurization of the cohort selected.

Cohort Selection
The MIMIC-III database captures over a decade of inten-
sive care unit (ICU) patient stays at Beth Israel Deaconess
Medical Center. An individual patient might be admitted to
the ICU at multiple times over the years, and even within a
single hospital stay could be moved in and out of the ICU
multiple times. We choose to focus on each subject’s first
ICU visit only, since those who make repeat visits typically
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Table Name Index Variables

patients subject_id, hadm_id, icustay_id static demographics, static outcomes
vitals_labs subject_id, hadm_id, icustay_id, hours_in time-varying vitals and labs (hourly mean, count and standard deviation)
vitals_labs_mean subject_id, hadm_id, icustay_id, hours_in time-varying vitals and labs (hourly mean only)
interventions subject_id, hadm_id, icustay_id, hours_in hourly binary indicators for administered interventions

Table 1: Description of all output tables generated by MIMIC-Extract.

Figure 2: MIMIC-Extract Overview: First, a cohort is
created that meets our selection criteria. Static de-
mographic variables and ICU stay information for
patients in the cohort are extracted and stored in
patients. Next, labs and vitals for patients in the
cohort are extracted and stored in vital_labs and
vitals_labs_mean. By default, only labs and vitals
that are missing less frequently than a pre-defined
threshold are extracted and outlier values are fil-
tered based on physiological valid ranges. Finally,
hourly intervention time series for the same patients
are extracted and stored in interventions.

require additional considerations with respect to modeling
and providing useful treatment. Our proposed pipeline thus
includes all patient ICU stays in the MIMIC-III database
that meet the following criteria: the subject is an adult (age
of at least 15 at time of admission), the stay is the first
known ICU admission for the subject, and the total duration
of the stay is at least 12 hours and less than 10 days. This co-
hort selection is consistent with many previous papers using
MIMIC-III [7, 9–11, 18, 25, 27].

Variable Selection
Static Variables. By default, our extraction code extracts

all 10 static demographic variables listed in Table 2, along
with static outcomes including in-ICU mortality, in-hospital
mortality, and the patient’s total ICU length-of-stay (LOS),
in hours. Our pipeline presents values for static variables
as they originally appear in MIMIC-III raw data with no
additional outlier removal. For example, age for patients older

than eighty-nine is masked as 300 in MIMIC-III for privacy
reasons, and our pipeline preserves this sentinel value to allow
downstream handling of these subjects.

Variable Concept

age patient age (masked as 300 for patients
older than 89 years old in MIMIC-III)

ethnicity patient ethnicity
gender patient gender
insurance patient insurance type
admittime hospital admission time
dischtime hospital discharge time
intime ICU admission time
outtime ICU discharge time
admission_type type of hospital admission
first_careunit type of ICU when first admitted

Table 2: Static demographic variables and admission
information generated by MIMIC-Extract.

Time-Varying Vitals and Labs. By default, our extraction
code extracts 104 clinically aggregated time-series variables
(listed in Appendix A) related to vital signs (e.g., heart rate
or blood pressure) and laboratory test results (e.g., white
blood cell counts). These were selected as a comprehensive
set of possible signals for prediction algorithms with input
from clinical care teams. Practitioners can optionally choose
to output only a subset of these variables that meet certain
minimum percentages of non-missingness, as explained in
later sections.

When comparing our selected features to previous work,
we find that we include all 12 time-varying features in the
small curated set of 17 features considered by Purushotham
et al. [24] (the other 5 include two static features we use,
age and admission type, and three diagnosis code features
we intentionally omit). We include 13 of the 17 time-varying
vitals and labs featured in Harutyunyan et al. [12]’s recent
pipeline (we omit capillary refill rate due to high missingness
rates as do all the feature sets surveyed by Purushotham
et al. [24]; we further do not consider the separate eye, motor
and verbal Glascow coma scores, only the total score). Impor-
tantly, unlike the large set of 136 “raw” features advocated
by Purushotham et al. [24], we do not include any prescrip-
tion drugs such as aspirin — this is an intentional omission,
because of the unclear quality of the prescription signals in
the MIMIC-III database. Without additional insight into the
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prescriptions a patient actually took, which may differ from
all prescriptions ordered for a patient, we feel the inclusion
of prescriptions can induce significant confounding effects on
the resulting models.

Unit Conversion and Outlier Detection
Sometimes vitals and labs are recorded with different mea-
suring units in EHR data. Our data pipeline standardizes
measurements into consistent units, including weight into
kilograms, height into centimeters, and temperature into
degrees Celsius. This process is easily extensible if any ad-
ditional unit-classes are added by downstream users which
need conversion.

To handle outliers, we make use of a list of clinically rea-
sonable variable ranges provided in the source code repository
of Harutyunyan et al. [12],2 which was developed in conversa-
tion with clinical experts, based on their knowledge of valid
clinical measure ranges. Each numerical variable is associ-
ated with upper and lower thresholds for detecting unusable
outliers. If the raw observed value falls outside these thresh-
olds, it is treated as missing. Additionally, each variable is
associated with more refined upper and lower thresholds for
defining the physiologically valid range of measurements. Any
non-outlier value that falls outside the physiologically valid
range is replaced with the nearest valid value. In generating
the default cohort, we replace 35,251 (0.05%) measurements
classified as non-valid outliers with nearest valid values and
remove 5,402 (0.008%) measurements classified as extreme
outliers. Appendix A lists the proportion of outliers detected
at an aggregated feature level.

At the time of writing, this standardized process of outlier
detection and removal is unique to our benchmarking system.
In contrast, the public pipeline of Harutyunyan et al. [12]
does not perform any outlier detection and replacement3.
Similarly, the pipeline of Purushotham et al. [24] does not use
outlier removal for its recommended set of 136 raw features,
while for their comparison small set of 17 features involved in
the SAPS score (including 5 non-time-varying ones) they do
remove outliers “according to medical knowledge” but provide
few reproducible details. We emphasize that updating the
outlier handling of either pipeline would be a labor-intensive
change (requiring editing source code).

Hourly Aggregation
The raw data in MIMIC-III provides fine-grained timestamps
(with resolution in units of seconds or finer) for each labo-
ratory measurement and recorded vital sign. However, most
measurements are infrequent (e.g. blood tests of interest may
be run every few hours at most), meaning each variable’s raw
time-series is quite sparse. To obtain a denser representation
that is easier to reason about and readily applied to modern

2https://github.com/YerevaNN/mimic3-benchmarks/blob/master/
mimic3benchmark/resources/variable_ranges.csv. Accessed 2019-03-
29.
3Note in README: “**Outlier detection is disabled in the current ver-
sion**” https://github.com/YerevaNN/mimic3-benchmarks/commit/
2da632f0d#diff-04c6e90faac2675aa89e2176d2eec7d8

machine learning methods for time-series that expect dis-
cretized time representations, we aggregate the observations
from each ICU stay’s time-series into hourly buckets.

Semantic Grouping of Raw Features into
Clinical Aggregates
Each measurements in the MIMIC-III database is associ-
ated with a unique ItemID, as specified by the original EHR
software. These raw ItemIDs are not robust to changes in soft-
ware or human data entry practices. For example, “HeartRate”
may be recorded under ItemID 211 (using CareVue EHR sys-
tems before 2008) or under ItemID 220045 (using MetaVision
EHR software after 2008). We thus developed a manually
curated clinical taxonomy designed to group semantically
equivalent ItemIDs together into more robust “clinical aggre-
gate” features. These aggregate representations reduce overall
data missingness and the presence of duplicate measures. Ap-
pendix A details the proposed clinical taxonomy about the
MIMIC-Extract featurization. Parallel work by Nestor et al.
[22] shows that aggregating via this kind of clinical taxonomy
yields significant benefits to the robustness of downstream
models with respect to clinical concept drift over time. Our
proposed software pipeline makes this useful taxonomy ac-
cessible to researchers and enables reproducibility.

Time-Varying Treatment Labels
Our code extracts hourly binary indicators of when (if ever)
common treatments were provided to each patient over time.
We include device treatments such as mechanical ventilation,
as well as drug treatments such as vasopressors and fluid
boluses.

We target these interventions because they are commonly
used in the ICU [21, 29] and, despite medical necessity, they
can present notable harms to patients [6, 28]. We include fluid
boluses of two types as interventions, crystalloid and colloid,
but do not predict them because they are often considered less
aggressive alternatives to vasopressors [17]. The output stores
binary indicators of whether an intervention was applied (1)
or not applied (0) within a given hour; any missing data is
considered a non-treatment (0).

Note that we extract both individual vasopressors (e.g.,
adenosine, dopamine, norepinephrine, vasopressin, etc.) and
overall vasopressor usage, consistent with the MIMIC-III
codebase [15]. A comprehensive list of extracted interventions
is provided in Table 3.

Extensibility of Data Pipeline
While MIMIC-Extract promotes reproducibility by providing
a default cohort for common benchmark tasks, it is also able
to to extract data tailored to specific research questions. In
this section, we demonstrate four possible modifications and
extensions of this pipeline to enable customized extraction.

Keywords. Functions in MIMIC-Extract use keywords to
control admission cohort and time-varying features selection.

https://github.com/YerevaNN/mimic3-benchmarks/blob/master/mimic3benchmark/resources/variable_ranges.csv
https://github.com/YerevaNN/mimic3-benchmarks/blob/master/mimic3benchmark/resources/variable_ranges.csv
https://github.com/YerevaNN/mimic3-benchmarks/commit/2da632f0d#diff-04c6e90faac2675aa89e2176d2eec7d8
https://github.com/YerevaNN/mimic3-benchmarks/commit/2da632f0d#diff-04c6e90faac2675aa89e2176d2eec7d8
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Intervention Concept Mean Hours

vent mechanical ventilation 12.20
vaso vasopressor 8.10

adenosine adenosine 0.00
dobutamine dobutamine 0.36
dopamine dopamine 0.95
epinephrine epinephrine 0.60
isuprel isuprel 0.01
milrinone milrinone 0.87
norepinephrine norepinephrine 2.72
phenylephrine phenylephrine 4.06
vasopressin vasopressin 0.90

colloid_bolus colloid bolus 0.16
crystalloid_bolus crystalloid bolus 1.93
nivdurations non-invasive ventilation 25.81

Table 3: Hourly interventions extracted by
MIMIC-Extract. Mean Hours is the average num-
ber of hours when the continuous interventions are
on or when the intermittent interventions (colloid
bolus and crystalloid bolus) are administrated,
averaged across all patients. We include separate
interventions for 9 distinct vasopressor drugs as well
as a general vasopressor intervention when any one
is used.

Overwriting default values for the following keywords allows
researchers to modify default extraction:

min_age specifies a floor on patients’ age to be included in
the cohort,

min_duration & max_duration specify restrictions on ICU
length of stay,

group_by_level2 specifies whether the ‘raw’ or ‘clinically
aggregated’ labs and vitals should be extracted, and

min_percent excludes vital and lab variables that contain
high proportions of missing values.

Configurable Resource Files. The extraction code relies on
information in associated resource files for variable grouping
and extraction (itemid_to_variable_map.csv) and outlier
correction (variable_ranges.csv). By modifying these files,
researchers can extract sets of variables that are best suited
for specific studies and adjust custom outlier detection thresh-
olds for their task.

Embedded SQL Queries. Researchers can modify the code
or add SQL queries in the extraction code to include addi-
tional static variables, vitals and labs measurements and treat-
ment labels in the output tables. For example, acuity score
can be queried and added to the patients table, and treat-
ment fluid amount can be extracted to the interventions
table by querying respective tables in the MIMIC relational
database. We plan to maintain and update this codebase
regularly to reflect additional research needs and improve the
extensibility and ease of adding new SQL queries.

Additional Dataframes. By using a consistent cohort for
all output dataframes, MIMIC-Extract reduces the workload
on subsequent data processing in downstream tasks. While
it currently extracts static variables, vital signs, lab mea-
surements, and treatment interventions, MIMIC-III contains
more clinical information such as prescriptions or diagnostic
codes. Researchers can extend the pipeline to output addi-
tional groups of variables. This pipeline can also be extended
to extracting unstructured data such as caregiver notes to
enable multi-modal learning.

COMPARISON TO OTHER
EXTRACTION SYSTEMS
A particular reproducibility challenge that the machine learn-
ing for health community faces is the lack of standardized
data preprocessing and cohort specification [19]. We focus
here on the three most similar efforts to ours in addressing
this challenge with MIMIC-III: the benchmarks released re-
cently by Harutyunyan et al. [12], Purushotham et al. [24],
and Sjoding et al. [26]. While all these efforts have released
public code that transforms MIMIC-III into feature and la-
bel sets suitable for supervised machine learning prediction
tasks that take multivariate time-series input, they differ
from our work in several important dimensions, including the
following:

• Prediction Target: Which variables (e.g. mortality,
LOS) the task intends to predict.

• Prediction Framework: What format input and output
data take in the prediction task (see Figure 3).

• Patient Cohort: Whether the output cohort is generic
or task-specific.

• Time-varying Feature Representation: What feature
representation is chosen for the time-varying variables
and what feature transformation is applied.

• Output: The format used for output storage and pre-
sentation.

All works also differ with regard to which patient-specific
features are exported and used in prediction, though we do
not consider these differences in detail here. Table 4 sum-
marizes the comparison of MIMIC-Extract to these works4.
As demonstrated in the comparison, MIMIC-Extract is the
only pipeline that generates a generic cohort that can be di-
rectly read as Pandas DataFrame. It is also the only pipeline
that uses clinical aggregation, unit conversion, and outlier
detection on a large set of raw MIMIC-III data.

Prediction Targets. Mortality and length-of-stay (LOS) are
very common targets in relevant benchmark works and are
also included in this work. In addition, MIMIC-Extract is
the only work demonstrating an intervention prediction task
through predicting the onset, offset, stay on, and stay off of
mechanical ventilation and vasopressors. This task requires
the model to handle the decisions needed in a real ICU where
4While the comparisons to Harutyunyan et al. [12] and Purushotham
et al. [24] are based on full journal papers, the comparison to Sjoding
et al. [26] is based on a one-page abstract due to publication availability
at the time of writing.
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MIMIC-Extract Harutyunyan et al. [12] Purushotham et al. [24] Sjoding et al. [26]

Prediction
Target

Mortality Y Y Y Y
Length-of-Stay (LOS) Y Y Y
Phenotyping (ICD code) Y Y
Physiological Shock Y
Acute Respiratory Failure (ARF) Y
Ventilator intervention Y
Vasopressor intervention Y
Fluid Bolus intervention Y

Prediction
Framework

Fixed Input, Fixed Target Y Y Y Y
Dynamic Input, Dynamic Target Y Y

Cohort Generic Y
Task-Specific Y Y Y

Time-Varying
Feature
Representation

Raw Features 269 n/a 136 ?
Clinical Aggregate Features 104 17 12 ?
Unit Conversion Y Y not for raw ?
Outlier Detection Y disabled not for raw ?
Missingness Thresholding Y Y Y Y

Output Format .h5 .csv .npy .npz
Presentation Cohort Patient Cohort Cohort

Table 4: Comparisons of public MIMIC-III data pipelines. “Y” indicates a “yes”. Purushotham et al. [24] used
clinical aggregation and outlier detection only in their “Feature Set A” which only considered the 17 variables
(12 time-varying, 5 static) used to calculate SAPS-II risk score. Similarly, these processing steps only apply
to a hand-selected set of 17 variables in Harutyunyan et al. [12]. Due to limited published resources available
about Sjoding et al. [26], some features are difficult to assess at present.

subjects may go on and off treatments throughout their stay
using most recently observed data.

While we do not demonstrate phenotype classification,
ICD-9 group classification or acute respiratory failure (ARF)
and shock predictions in this work, these prediction targets
can be derived either using default MIMIC-Extract output or
with slight extensions to the pipeline.

Prediction Framework. A typical clinical prediction task
usually uses one of the two prediction frameworks illustrated
in Figure 3:

• Fixed Input, Fixed Target: A fixed period window of
observations is taken from each patient (e.g. the first 24
hours of ICU) and a single target with a fixed temporal
relationship to the chosen input window is predicted
(e.g. in-hospital mortality or mortality within 30 days).

• Dynamic Input, Dynamic Target: Multiple (potentially
overlapping) subsequences are taken from each patient
(e.g. the most recent 6 hours). Each input subsequence
is used to predict a target variable at a known temporal
delay (e.g. remaining LOS, mechanical ventilation onset
one hour later). We will consider subsequences of fixed-
length in all dynamic benchmarks here (e.g. 6 hour
windows), but these could be variable-length in general.

In this work, we profile MIMIC-Extract for both “Fixed
Input, Fixed Target" and “Dynamic Input, Dynamic Target"
frameworks. In particular, we employ three classification
tasks: binary mortality prediction (both in-hospital and in-
ICU, given the first 24-hour window of patient history), binary
long length-of-stay (LOS) prediction (both greater than three

(a) Fixed Input, Fixed Target

(b) Dynamic Input, Dynamic Target

Figure 3: Common Time-Series Prediction Frame-
works.

and seven days, given the same 24-hour window), and 4-
class hourly intervention onset/offset prediction (for both
mechanical ventilation and vasopressor administration).

The only other pipeline work that also handles “Dynamic
Input, Dynamic Target" prediction is by Harutyunyan et al.
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[12] where they predict hourly next-day mortality, which
they call decompensation, and hourly remaining LOS. (Note
that they use variable-length subsequences in both tasks,
including at each hour information from all previous hours).
However, since they generated task-specific cohorts, it is a
more involved process to modify their source code to extract
a different dynamic target.

In addition, to the best of our knowledge Harutyunyan
et al.’s work does not employ greater-than-zero gap times
when structuring in-hospital mortality prediction, risking
temporal leakage of label information when training models.
For example, with fixed 48-hour input windows, suppose
a patient died at hour 48.5. It is likely that some signals
of imminent decline (e.g. last-minute aggressive treatments)
would be present before hour 48 and thus included as input,
leading the predictor to identify what the care team obviously
already knows about the patient’s poor health. This is a
limitation of these tasks; in this work, all tasks presented use
a non-zero temporal gap to ensure no such label leakage.

Cohort. Our system exports a single cohort, which can
be used in a variety of ways under different paradigms for
various tasks. In other words, MIMIC-Extract’s raw output
does not specify the prediction input features or targets and
do not impose task-specific inclusion criteria. All other three
works establish either task-specific inclusion criteria or task-
specific cohorts with different input features. As a result of
producing a generic cohort, MIMIC-Extract is more extensible
and easily adapted to different prediction tasks. The absence
of task-specific inclusion criteria can also lead to more robust
models. Lastly, by focusing more on the general data pipeline
workflow rather than task specifics, MIMIC-Extract presents
a framework that can be used by machine learning researchers
using other clinical datasets.

Time-varying Feature Representation. Our system exports
two possible featurizations: “raw” features which match the
input representation schema of MIMIC (at the ItemID level),
and “clinical aggregate” features, where outputs are grouped
together according to a manual taxonomy based on clinical
knowledge (see Appendix A). This representation induces a
robustness to underlying temporal concept drift in the repre-
sentation space [22]. Note that even though both Harutyun-
yan et al. [12] and Purushotham et al. [24] used ‘processed’
feature sets that involves clinical aggregation, unit conversion
and outlier detection, they only considered a limited set of
features for such transformation. MIMIC-Extract uses these
processing techniques to a more comprehensive set of labs
and vitals listed in Appendix A.

Output. Other than Harutyunyan et al. [12], all pipelines
generate cohort-level DataFrames or arrays that are easier for
data exploration and visualization. MIMIC-Extract’s output
can be read directly into a Pandas DataFrame that offers
greater readability and easier querying.

OUTPUT COHORT
CHARACTERIZATION
Our pipeline produces a cohort of 34,472 patients by default
with diverse demographic and admission coverage, as sum-
marized in Table 5. Alternative definitions of desired cohort
properties (minimum age, etc.) can yield different cohorts.
More details about the distribution of various features over
this cohort can also be found in Appendix A, which details,
among other things, the relative rates of missingness for
both the individual raw ItemIDs and the grouped clinical
aggregates over this cohort.

BENCHMARK TASKS AND MODELS
In this section, we profile several benchmark tasks, ranging
in complexity, across several types of models using data ex-
tracted with MIMIC-Extract, in an effort to both provide
meaningful benchmarks and baseline results for the commu-
nity, as well as to demonstrate the utility of this extraction
system. Code to run these benchmarks is available in the
form of accompanying Jupyter Notebooks.

We specifically endeavor to highlight tasks of varying com-
plexity, each with a broad clinical intervention surface. Ac-
cordingly, we categorize our benchmarks as two low complex-
ity tasks and one high complexity task. Our low complexity
tasks are both static, binary classification tasks, each broken
into two variants: mortality prediction (either in-hospital or
in-ICU) and long length-of-stay (LOS) prediction (either > 3
day or > 7 day). Our high complexity task is the hourly
prediction of the onset, offset, stay on and stay off of various
interventions, as performed in, e.g., Suresh et al. [27].

Notably, we do not include any tasks based on billing code
prediction; while such tasks were included as benchmarks
by Harutyunyan et al. [12], and are commonly used as a
target [4, 5, 16], we argue that predicting diagnosis code
is of minimal value clinically, given the lack of temporal
association linking a diagnosis to a particular point in the
record, and the fact that such codes are more associated with
the billing of a patient than the treatment of said patients [1].

We use a non-zero time gap between the most recent
feature measurement time and a relevant forecasted event
in all tasks. A gap is needed to allow practitioners time to
respond to a predicted risk; suddenly warning that a patient
is in instant critical need is not viable in medical practice.
Additionally, time is needed to assemble care teams or fetch
necessary drugs or equipment.

Mortality and Length-of-stay (LOS)
Predictions
Risk prediction tasks like mortality and long LOS predictions
are highlighted as benchmark tasks in both Purushotham
et al. [24] and Harutyunyan et al. [12]. Though common,
they are known to be relatively easy prediction tasks, with
performance saturating given only minimal data and even
under relatively modest models, such as random forests [3, 22]
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Gender Total
F M

Ethnicity Asian 370 472 842 (2%)
Hispanic 448 689 1,137 (3%)
Black 1,448 1,219 2,667 (8%)
Other 2,061 3,122 5,183 (15%)
White 10,651 13,992 24,643 (71%)

Age <30 748 1,084 1,832 (5%)
31-50 2,212 3,277 5,489 (16%)
51-70 4,888 8,054 12,942 (38%)
>70 7,130 7,079 14,209 (41%)

Insurance Type Self Pay 125 352 477 (1%)
Government 402 648 1,050 (3%)
Medicaid 1,186 1,596 2,782 (8%)
Private 4,415 7,431 11,846 (34%)
Medicare 8,850 9,467 18,317 (53%)

Admission Type Urgent 409 528 937 (3%)
Elective 2,282 3,423 5,705 (17%)
Emergency 12,287 15,543 27,830 (81%)

First Careunit TSICU 1,777 2,725 4,502 (13%)
CCU 2,185 3,008 5,193 (15%)
SICU 2,678 2,842 5,520 (16%)
CSRU 2,326 4,724 7,050 (20%)
MICU 6,012 6,195 12,207 (35%)

Total 14,978 (43%) 19,494 (57%) 34,472 (100%)

Table 5: Default Cohort Summary by Static Demographic and Admission Variables.

Task Definitions. We consider several varieties of these tasks,
including in-ICU mortality, in-hospital mortality, LOS > 3
days prediction, and LOS > 7 days prediction. For all tasks,
we use clinically grouped time-varying labs and vitals features
alone to predict these targets as binary classification task. In
all cases, we use the first 24 hours of a patient’s data, only
considering patients with at least 30 hours of present data.
This 6 hour gap time is critical to prevent temporal label
leakage, and must be included in any valid benchmark.

Data Pre-processing. Values were mean centered and scaled to
unit variance, then missing data was imputed using a variant
of the “Simple Imputation” scheme outlined in Che et al. [3],
in which we represent each variable via a mask (1 if the value
is present at this timestep, 0 otherwise), the imputed variable,
and the time since the last observation of this feature (with
values which have never been observed being given a sentinel
large value). In particular, variable values are first forward
filled and then set to individual-specific mean if there are
no previous values. If the variable is never observed for a
patient, its value is set to training set global mean.

Models Benchmarked. For all tasks, we profiled logistic regres-
sion (LR), random forest (RF), and gated recurrent unit with
delay (GRU-D) [3] models. As the point of this work is not
to make strong statements about the workings or efficacy of
these models, but rather to introduce our extraction pipeline
and demonstrate its use on benchmark tasks, we will not

discuss the details of these models here, but refer the reader
to external sources for more model details.

Models were tuned using random hyperparameter search [2]
under broad parameter distributions, with 60 hyperparameter
samples for RF and LR models, and a variable number of
samples for GRU-D (less than 60 in all cases) as GRU-D is
significantly more computationally intensive. Note that this
likely induces a small bias against GRU-D in these baseline
results.

Results. Results for these models are shown in Table 6. Our
AUROCs are very much in line with the literature for these
tasks, showing robustly high performance for GRU-D and
RF models, as expected. One interesting observation is that
random forest models often have poor F1 scores, even while
maintaining competitive AUPRC scores. This may indicate
that these models are more sensitive to the initial choice of
threshold than are other models. Similarly, GRU-D often
displays stronger performance under the AUPRC metric
than the AUROC metric relative to other models, which
likely speaks in its favor here given the strong rates of class
imbalance in these tasks.

Clinical Intervention Prediction
We also use MIMIC-Extract for intervention prediction tasks.
Well-executed intervention prediction can alert caregivers
about administrating effective treatments while avoiding un-
necessary harms and costs [10, 11]. In a high-paced ICU,
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Task Model AUROC AUPRC Accuracy F1

In-ICU Mortality
LR 88.7 46.4 93.4% 38.4
RF 89.7 49.8 93.3% 12.6
GRU-D 89.1 50.9 94.0% 43.1

In-Hospital Mortality
LR 85.6 49.1 91.1% 42.1
RF 86.7 53.1 90.7% 19.6
GRU-D 87.6 53.2 91.7% 44.8

LOS > 3 Days
LR 71.6 65.1 68.6% 59.4
RF 73.6 68.5 69.5% 59.5
GRU-D 73.3 68.5 68.3% 62.2

LOS > 7 Days
LR 72.4 18.5 91.9% 7.2
RF 76.4 19.5 92.3% 0.0
GRU-D 71.0 17.9 91.2% 10.7

Table 6: Performance Results on In-ICU Mortality,
In-Hospital Mortality, > 3 Day LOS, and > 7 Day
LOS. Classification threshold used for computing ac-
cuarcy and F1 is set to 0.5. (Note that due to their
additional computational overhead, GRU-D models
were undersampled during hyperparameter turning
as compared to LR and RF models.)

such decision-support systems could be a fail-safe against
catastrophic errors. We argue that tasks like intervention
prediction have a stronger time-series focus and are clini-
cally actionable. Following prior work on clinical intervention
prediction [10, 11, 27], we present models for predicting two
target interventions, mechanical ventilation and vasopressors.

Task Definitions. To make clinically meaningful predictions,
we extract from MIMIC-Extract clinically aggregated outputs
a sliding window of size 6 hours as input features, then predict
intervention onset/offset within a 4 hour prediction window
offset from the input window by a 6 hour gap window. For
each intervention at each prediction window, there are 4
possible outcomes:
Onset When the intervention begins off and is turned on.
Stay On When the intervention begins on and stays on.
Wean When the intervention begins on and is stopped.
Stay Off When the intervention begins off and stays off.

Data Pre-processing. Time-varying lab and vital data are
preprocessed in a manner similar to that used in the mortality
and LOS prediction, except that the “time since last measure”
column is also centered and rescaled as this is found to
improve performance for our neural models. We also include
5 static variables (gender, age bucket, ethnicity, ICU type,
and admission type) and time-of-day as additional features.

Models Benchmarked. We profile LR, RF, convolutional neu-
ral network (CNN) models, and Long Short-Term Memory
(LSTM) models for this task. Hyperparameters for RF and
LR models were tuned via random search, whereas for CNN
and LSTM models, parameters were replicated from prior
work by Suresh et al. [27].

Results. Model performance is summarized in Table 7.
We find that CNN and LSTM models perform very simi-

larly to prior studies—this is notable given we do not include

RF LR CNN LSTM
Vent. Vaso. Vent. Vaso. Vent. Vaso. Vent. Vaso.

Onset AUROC 87.1 71.6 71.9 68.4 72.2 69.4 70.1 71.9
Wean AUROC 94.0 94.2 93.2 93.9 93.9 94.0 93.1 93.9
Stay On AUROC 98.5 98.5 98.4 98.2 98.6 98.4 98.3 98.3
Stay Off AUROC 99.0 98.3 98.3 98.5 98.4 98.1 98.4 98.1

Macro AUROC 94.6 90.7 90.4 89.8 90.8 90.0 90.0 90.1

Accuracy 79.7 83.8 78.5 72.9 61.8 77.6 84.3 82.6

Macro F1 48.1 48.9 47.7 45.1 44.4 44.4 50.1 48.1

Macro AUPRC 42.7 42.0 43.1 40.2 42.4 38.9 44.4 41.7

Table 7: Performance Results on Mechanical Venti-
lation and Vasopressor Prediction.

notes, whereas many prior studies do [27]. RF models perform
surprisingly well, outperforming CNN and LSTM models and
prior results reported in the literature.

DESIGN CHOICES AND LIMITATIONS
While MIMIC-Extract aims to be flexible in supporting a wide
range of machine learning projects using MIMIC-III, we make
several design choices that may render MIMIC-Extract less
relevant to tasks that differ significantly from the benchmark
tasks presented in this paper.

Most notable among these designed choices are the features
we exclude. Notable such categories include prescriptions, cer-
tain labs and vitals, various treatments/interventions, and
notes. Many of these features can be externally extracted
and joined to our pipeline’s output (as we demonstrate in
‘Extensibility of Data Pipeline’ Section for notes), and others
we exclude intentionally due to concerns about their robust-
ness (prescriptions), but other parties may wish to extend
the pipeline to enable extraction of these features.

In addition, our time-series coarsening into hourly buckets
can also be limiting for certain tasks. By bucketing data into
hourly aggregates, we lose out on a level of granularity present
in the raw data and force the irregular medical timeseries
into a artificially regular representation. We also lose all
granularity with regards to time-of-day, which has known
effects on care delivery [1]. Similarly, our clinical groupings,
while highly performant, are also manually curated and limit
the extensibility of the pipeline to new labs and vitals.

CONCLUSION
MIMIC-Extract is an open source cohort selection and pre-
processing pipeline for obtaining multivariate time-series
for clinical prediction tasks. The system produces a single,
large cohort and represents time-varying data according to
manually-defined, clinically meaningful groupings. This rep-
resentation shows strong performance and robustness to care
practice drift. We demonstrate that this pipeline can be used
in a diverse range of clinical prediction tasks. We hope its
focus on usability, reproducibility, and extensibility will help
spur development of machine learning methodology via clini-
cally relevant and reproducible benchmark tasks. Ultimately,
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we hope MIMIC-Extract will enable easier and faster develop-
ment of effective machine learning models that might drive
improvements in delivering critical care.

CODE AVAILABILITY
The full MIMIC-EXTRACT pipeline code, including SQL queries
and configurable resource files, as well as Jupyter Notebooks
walking through benchmark tasks and models are available
at https://github.com/MLforHealth/MIMIC_Extract.
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