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Brain-computer interfaces (BCI) are an emerging technology with many potential applications. Functional near-infrared spectroscopy 
(fNIRS) can provide a convenient and unobtrusive real time input for BCI. fNIRS is especially promising as a signal that could be 
used to automatically classify a user’s current cognitive workload. However, the data needed to train such a classi�er is currently not 
widely available, di�cult to collect, and di�cult to interpret due to noise and cross-subject variation. A further challenge is the need 
for signi�cant user-speci�c calibration. To address these issues, we introduce a new dataset gathered from 15 subjects and a new 
multi-stage supervised machine learning pipeline. Our approach learns from both observed data and augmented data derived from 
multiple subjects in its early stages, and then �ne-tunes predictions to an individual subject in its last stage. We show promising gains 
in accuracy in a standard “n-back” cognitive workload classi�cation task compared to baselines that use only subject-speci�c data or 
only group-level data, even when our approach is given much less subject-speci�c data. Even though these experiments analyzed 
the data retrospectively, we carefully removed anything from our process that could not have been done in real time, because our 
process is targeted at future real-time operation. This paper contributes a new dataset, a new multi-stage training pipeline, results 
showing signi�cant improvement compared to alternative pipelines, and discussion of the implications for user interface design. Our 
complete dataset and software are publicly available at https://tufts-hci-lab.github.io/code_and_datasets/. We hope these results make 
fNIRS-based interactive brain input easier for a wide range of future researchers and designers to explore. 
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1 INTRODUCTION 

Functional near-infrared spectroscopy (fNIRS) shows increasing promise to enable e�ective brain-computer interfaces 
(BCI) for a wide range of users. fNIRS is non-invasive, unobtrusive, and even easier to set up than conventional 
electroencephalograph (EEG) devices. However, a signi�cant barrier to wider use is that fNIRS signals are di�cult to 
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analyze and have heretofore required extensive per-user calibration e�ort. Previous works have shown examples in 
which good fNIRS signals can be used as part of an interactive interface [2, 57, 58, 66, 67]. These e�orts have usually 
tailored tasks to each speci�c experiment, pursued separate training datasets and classi�ers for each subject, and used 
more traditional classi�ers. While these works have obtained objectively measurable task performance improvements 
and thus o�er compelling “proofs of concept,” fNIRS remains di�cult for a wider range of researchers to adopt. In this 
paper we attempt to advance the tools, infrastructure, and datasets that will facilitate wider use of fNIRS input. 

A key challenge to developing subject-speci�c classi�ers is that the amount of available training data from any single 
subject is usually limited. Small training sets are an impediment to good machine learning performance. The nature of 
fNIRS data especially limits the number of samples we can collect from a single subject. Unlike EEG, the signal that 
fNIRS measures has an inherently slow response rate (on the order of several seconds). This is not due to the equipment 
or technology, but rather the physiology of the body itself. A typical experimental session lasts for about an hour, and 
in general it is reasonable to think that typical users would not sit for a session that lasts for many hours. To overcome 
this limited data challenge, an intuitive idea is to augment the model by including data from other subjects performing 
the same task using the same measurement device. However, the human brain has considerable variability. Simply 
aggregating data from a larger pool of subjects has not worked well in our past experience. 

In this work, we have developed a new multi-stage machine learning pipeline for training cognitive workload 
classi�ers speci�c to a chosen “target” subject of interest that can leverage data from many subjects. Our new machine 
learning pipeline is composed of three phases designed to address the problems of limited data and cross-subject 
variability. The �rst phase uses data augmentation applied to data from a large pool of subjects (other than the target) 
to “pretrain” a deep learning classi�er. The second phase trains further on the observed data from the same large pool of 
other subjects, producing the initial neural network parameters for the third phase. The third phase is then trained 
on data from the target subject. The result is a model that bene�ts from the information from other subjects, but is 
ultimately specialized to the target subject. Intuitively, this matches the notion that, while human brains are highly 
variable, they are also similar in some fundamental ways, and we ought to be able to bene�t from that property. 

We have also developed (and publish herewith) a new general purpose dataset of the fNIRS recordings from 15 users 
performing a standard psychological task. To our knowledge there are currently few large datasets available for this 
purpose. We have investigated several [8, 30] and particularly the 26-subject dataset from TU-Berlin [54], which is 
one of the best available datasets, but found we needed additional data collected with di�erent sensors and a more 
controlled environment to properly assess the generalization of our pipeline. We show that our proposed pipeline 
delivers strong performance on both our 15 subject dataset and the external TU-Berlin dataset of 26 subjects [54]. 

Contributions. The contributions of our work can be summarized as follows: 
1. We release a new multi-subject fNIRS dataset at https://tufts-hci-lab.github.io/code_and_datasets/ along with 

demographic and contextual information, cognitive task performance records, subjective workload, experiment log 
reports, and post-experiment interviews; 

2. We propose a 3-phase machine learning-based pipeline to improve subject-speci�c classi�cation of n-back cognitive 
workload from short windows of fNIRS time-series data, reducing the required amount of subject-speci�c training data 
by leveraging data from other subjects; 

3. We open source our software at https://tufts-hci-lab.github.io/code_and_datasets/ to provide an easily-accessible 
system/tool for other researchers, including code for data collection and machine learning. 
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Ultimately, our dataset, code, and methodology can enable future researchers to �exibly explore new methods and 
use cases for BCI workload classi�cation and improve generalization to new subjects. We intend to expand our dataset 
to more subjects in future work, in hopes that additional data from more subjects will improve our technique even 
further and advance the state-of-the-art for fNIRS-based cognitive workload classi�cation. 

2 RELATED WORK 

Generally, cognitive workload ("working memory workload") refers to the quantity of working memory resources 
used when performing cognitive tasks. Tasks with more cognitive demand (i.e. working memory tasks of higher 
di�culty) induce higher levels of cognitive workload [32]. The n-back task is a standard method for inducing working 
memory cognitive workload. The task presents a subject with a series of stimuli and requires them to compare the 
current stimulus to the stimulus shown = steps previously [43]. Extensive previous work suggests that as = increases, 
heightened workload can be quanti�ed through lower rates of accuracy among users [47]. The range of = values can 
simulate di�erences in workload similarly to real tasks of varying di�culty [19], or can be used as a means to induce 
di�erent amounts of workload to be measured and compared [50]. A meta-analysis of the n-back task conducted by 
von Janczewski and Nikolai, et al. [64] con�rmed the n-back task’s e�ect on cognitive workload. We used the n-back 
task for our study, because it is a well-established experimental task and can thus provide a grounded evaluation of the 
e�ect of our machine learning approach, rather then creating an untested new task. 

Self-reports of cognitive workload. Self-reports are widely accepted collaborating evidence of cognitive workload. Many 
researchers have developed methods of measuring perceived workload. Hart and Sandra G created the NASA-TLX [25] 
which has six dimensions: 1. mental demand; 2. physical demand; 3. performance; 4.e�ort; 5. frustration. A. Tattersall 
and P. S. Foord [61] developed a simpler scale to collect subjects’ subjective cognitive workload. However, John Sweller 
and Ayres, et al. [60] pointed out that self-reports should not be treated as direct measurements of cognitive workload. 

Physiological measures of cognitive workload. There are several kinds of physiological data that can be used to re�ect 
cognitive workload, such as EEG[9, 44, 55], GSR[53], and eye tracking[15, 42]. Physiological measures are advantageous 
in that they can monitor subjects’ concurrent cognitive workload. They are used to build adaptive real-time Brain-
Computer Interfaces (BCI) [7, 22]. 

fNIRS as a measurement of cognitive workload. Work by Afergan et al. [2] shows that we can use fNIRS signals to 
detect task di�culty in real-time and construct an interface that improves user performance through dynamic di�culty 
adjustment. A system developed by Yuksel et al. [67], can dynamically increase the levels of di�culty in a musical 
learning task based on subjects’ cognitive workload. 

Open-access fNIRS datasets for cognitive workload tasks. We have investigated all 30 papers that match a keyword 
search for fNIRS and were published within the last �ve years in the ACM digital library. As noted above, the best 
open-access cognitive workload fNIRS dataset we found is by Shin et al. [54]. Our contribution of a new and more 
rigorously controlled dataset (as we described in Section 3) thus �lls a critical need for the research community. 

Previous machine learning classifiers of cognitive workload from n-back fNIRS data. Multiple previous studies have 
developed machine learning classi�ers to identify cognitive states given fNIRS data. Some prior studies focus on average 
activation patterns for di�erent types of workload [5, 20, 29, 49]. Her� et al. [28] developed subject-speci�c models 
using hand-engineered features from sliding windows and reported 78% accuracy on 1-back vs. 3-back tasks across 
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10 subjects. Aghajani et al. [4] also developed subject-speci�c models using hand-engineered features from sliding 
windows, reporting 74.8% accuracy on a 0-back vs. 2-back task across 15 subjects. However, neither of these studies 
looked at deep learning methodologies to learn feature representations or considered cross-subject transfer of models. 

Previous deep learning classifiers of cognitive workload from fNIRS data. Deep learning is a sub�eld of machine learning 
that uses arti�cial neural networks to develop �exible learned representations from complex and high-dimensional 
input signals, often vaguely inspired by the structure of human brain. Deep learning has been gaining research attention 
in the past decade due to its successes in many areas such as image classi�cation, speech recognition and machine 
translation [39]. 

In recent years, several research e�orts on fNIRS data have begun to investigate deep learning methods. Early 
work by Hennrich et al. [27] applied feed-forward neural networks to classify which cognitive tasks were performed, 
yielding prediction quality comparable to conventional (non-neural) classi�ers. Saadati et al. [51] explored the use 
of convolutional neural networks (CNNs) for mental workload classi�cation from fNIRS data. They found signi�cant 
improvement compared to conventional methods and regular neural networks without convolutions. Benerradi et al. 
[8] found that convolutional neural networks required training datasets so large that they could not build subject-
speci�c “personalized” models, only subject-independent “generalized” models. In the generalized setting, their CNNs 
classi�ed high vs. low mental workload with similar accuracy (72.77% vs. 71.27%) as more conventional support vector 
machine (SVM) methods. Recently, Kwon et al. [35] used CNNs to build subject-independent fNIRS models. Their 
CNN architecture used an evolving normalization-activation layer (EvoNorm) [40] in place of the more common Batch 
Normalization layer (BatchNorm) [31]. They report average classi�cation accuracy of over 70% on distinguishing mental 
arithmetic versus idle state, outperforming alternative pipelines including another deep-learning model, EEGNet [38]. 

Previous machine learning methods for cross-subject BCI. In general, BCI systems require tedious calibration procedures 
that adapt to subject-speci�c data, which has been a major obstacle to wider applications of BCI. Previous studies 
have explored ways to learn from multiple subjects in order to improve subsequent generalization to a target subject. 
Kwon et al. [36] applied ML classi�ers to EEG data for motor imagery (MI) BCI classi�cation. They found that a 
subject-independent model (trained on data from many other subjects) can outperform models trained only on a 
separate session of target subject training data. This motivates our pursuit of learning feature representations from 
many subjects. 

Recently, a study by Lyu et al. [41] considers the problem of workload classi�cation from fNIRS data that speci�cally 
adapts across subjects. They train models using data from one subject and generalize to a completely di�erent subject, 
using methods from optimal transport. They achieve 55% accuracy in a balanced four-class =-back task compared to 
44% for a baseline convolutional neural net. Their task of interest allows no subject-speci�c training (“calibration”). 
In contrast, our study can learn representations from many subjects while allowing later subject-speci�c calibration, 
which we show can improve performance. 

Kostas and Rudzicz [34] considered EEG from multiple subjects, using MixUp for data augmentation. They focused on 
a deep neural network architecture “TIDNet” to classify EEG data. MixUp is important to their work as a regularization 
method to avoid the degenerate case where their large network might simply “memorize” the training data. Their 
proposed network, TIDNet, performs well with the help of Euclidean Alignment (a technique to try to standardize the 
measured signals across multiple subjects) and MixUp. 

Han and Jeong [24] approached BCI from a domain generalization (DG) perspective, considering EEG data from 
15 subjects, where each subject contributed two sessions on separate days. Their goal was to generalize to a new 
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Instruction Beep Rest

Task

Trial_1 Trial_40 NASA-TLX......

5 sec for 0-back
10 sec for 1-back

15 sec for 2&3 -back

3 sec 2 sec 2 sec 2 sec subject
dependent

20 sec for 0&1-back
30 sec for 2-back
40 sec for 3 -back

W_1 W_2 W_139

stride = 3 timesteps length = 10 timesteps

Fig. 1. For each task, subjects underwent pre-task, task, and post-task stages. The duration of instruction and rest period varied 
among di�erent n-back tasks. Our open source dataset contains data from the whole process. In this study, only the task periods 
(trials 1-40) were analyzed and used to generate the sliding window data. 

session. They conclude that using subject-speci�c data from Day 1’s session can deteriorate Day 2 performance due to 
inter-session variability. We will later show that within-session �ne-tuning improves performance. Han and Jeong [24] 
also experimented with expanding their limited training data via synthetic samples from MixUp. However, they found 
MixUp does not improve classi�er performance across sessions. In contrast, our later results show improvements from 
synthetic data via a carefully-designed MixUp procedure. 

3 EXPERIMENTAL METHODOLOGY 

3.1 Experiment design 

3.1.1 IRB and COVID-19 protocol. Our entire data collection was performed in early 2021 during the COVID-19 
pandemic. All procedures were approved by our institution’s IRB and COVID safety review committee. Subjects were 
compensated $20 USD. The experimenters used personal protective equipment, disinfected the fNIRS probe for each 
subject, and waited 72 hours between subjects to allow proper ventilation and sanitation, as approved by the review 
committees. 

3.1.2 Pre-experiment. We collected demographic information from the subject. The system then played a short 
introductory video, showing an example of a user completing n-back tasks, with voice-over and caption explanations. 
To minimize interruptions, the video instructed the subject to remain seated, not to talk, and to refrain from adjusting 
the fNIRS sensors for the duration of the experiment. After the video, the operator placed the sensors on the subject. 

3.1.3 Experimental tasks. We utilized the n-back task because, as previously discussed, it is a well-established method 
for inducing working memory mental workload. Our subjects completed 16 n-back tasks, where the value of = within 
each task was either 0, 1, 2, or 3. The order of tasks was predetermined and the same for every subject. Organized 
into 4 sequences of 4 tasks each, the order (0!1!2!3!1!2!3!0!2!3!0!1!3!0!1!2) resembled a Latin 
square (see Appendix E.1); each value of = occurred once in each of the 4 positions within the sequence. Each task 
(depicted in Figure 1) was administered as follows: 

Pre-task. Before each task, the system displayed a graphic depicting how to identify targets for the current =. The 
start of the task was indicated with several beeps. 
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Data Storage Layer

Back-end Layer

Application Layer

Front-end Layer

Pre-experiment Experiment Post-experiment

VUE.js Bootstrap
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FLASK PYTORCH

Biosensor data
? fNIRS?

Experiment 
settings Log

Fig. 2. Framework implementation 

Task. Each task consisted of 40 trials for the same chosen value of =. During each trial, a digit between 0 and 9 was 
shown on the screen for 1.5 seconds and then hidden for 0.5 seconds before the next trial began. The subject needed to 
press the left arrow key if the digit on the screen was a target (i.e. the same as the digit �ashed = trials previously) and 
the right arrow key otherwise. 

Post-task. After each n-back task, the interface prompted the subject to report their subjective workload according 
to the NASA Task Load Index (TLX) [25]. Then, the interface instructed the subject to close their eyes and rest. The 
duration of the rest depended on =, with the assumption that harder tasks need longer rests. For 0 and 1-back tasks, the 
subject was given 20 seconds of rest. For 2-back tasks, the subject was given 30 seconds, and for 3-back, 40 seconds. 

3.1.4 Post-experiment. After the subject completed the entire experiment, we conducted a short interview about the 
subject’s experience. 

3.2 Framework implementation 

To collect high quality fNIRS data, we designed and implemented a fully automated, modularized, multi-modal framework 
that is capable of analyzing o�ine and online data. 

3.2.1 Automation. In previous studies, we observed that many subjects did not fully understand the experimental 
tasks and might to ask for help from the operator. This might cause interruption or pollution of fNIRS data. Our system 
accounts for this by providing every subject with the same information via a detailed introduction and tutorial video. 
Additionally, the interface provides the subject with a graphic before every =-back task as a reminder of the instructions 
for the current value of =. 

Furthermore, in previous studies, we observed that having the operator on duty manually performing operations 
during the experiment can result in errors. With our automated system, we eliminate the chance of these errors since 
the operator is not responsible for any operations during the experiment. 

6 



Taming fNIRS-based BCI Input for Be�er Calibration and Broader Use UIST ’21, October 10–14, 2021, Virtual Event, USA 

3.2.2 Modularization. We used extensive modularization throughout all parts of our framework to ensure that we can 
easily add devices and update parameters. 

We split the whole experiment process into a series of components such as the pre-experiment (survey, general 
introduction, device calibration), experiment (sessions, tasks, in-task introduction, trials, post-task surveys, and rest 
periods), and post-experiment survey. Each component has a corresponding modularized VUE template, making it 
�exible to re-organize the front-end software and adapt to new experiment procedures. Other researchers could make 
use of our system with their own experiment design. The front end is also parameterized, making it easy to update the 
contents inside the components (audios, videos and graphics). 

The back-end consists of multiple individual modules, such as data receivers to receive and store data, data pre-
processing modules to pre-process the data according to speci�c device features, the machine learning module to 
analyze the BCI data, and the prediction generation server to provide real-time output. 

3.2.3 Multi-modal. The framework has standardized receiver protocols and supports multi-modal inputs (fNIRS, 
GSR device, portable EEG device, etc.). More devices can easily be added into the experiment to gather additional 
biophysiological data, enabling multi-modal machine learning methods. 

3.2.4 O�line and online. The framework supports both o�ine and online data analysis. We can use the system to 
collect data, run o�ine data analysis, �nd the best model, and then save it as a pre-trained model to reduce training 
time cost on new subjects. Then, we can deploy the model in real-time and generate predictions based on the subject’s 
concurrent biophysiological state. 

3.3 Data collection 

Over 3 months in early 2021, 27 healthy individuals (age range 20 ± 2.3, 18 to 28 years old) have participated in the 
study. We deemed 15 of these subjects’ data eligible for this work based on their behavior during the experiment session, 
as explained below. 

Demographic and contextual information. Through the testing interface, we collected demographic data (gender, sex, 
age, ethnicity, handedness, vision, native language) from the subject. We also collected contextual data (previous head 
injuries, sleep habits, ca�eine intake, drug use, prior experience with biological sensors or =-back tasks). 

fNIRS measurements. To measure changes in the physiologically relevant chromophore concentrations, oxyhe-
moglobin ([�1$]) and deoxyhemoglobin ([�1']), frequency-domain near-infrared spectroscopy (FD-NIRS) was used. 
Given that the goal of these measurements was to measure functional activation, the measurement will be referred to as 
fNIRS. FD-fNIRS was implemented at a modulation frequency of 110 MHz and wavelengths of 690 nm and 830 nm (ISS 
Imagent, Champaign, IL USA). The output of the FD-fNIRS measurement was the alternating-current (AC) intensity (� ) 
and phase (q) for each source-detector pair. 

As shown in Figure 4, two optical probes were placed on each subject’s forehead, one for the left hemisphere and 
the other for the right hemisphere. The probes were secured to the subject’s head using a hook and loop headband 
which passed through the center of the probe. Light was delivered to the probe via 400 `m diameter multi-mode �bers 
and collected by 5 mm diameter �ber bundles. These �bers were held in-place by a �exible plastic mesh and were 
encapsulated in black silicone [12]. 

Each optical probe had optode geometry implemented via the dual-slope (DS) method [13]. A schematic of one of 
these DS probes is shown in Figure 3. Each probe consisted of two source positions (each with two wavelengths) and 
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S1 D1 D2 S2
25MM 10MM 25MM

Fig. 3. Structure of a single dual-slope (DS) functional near-infrared 
spectroscopy (fNIRS) probe. S1 and S2 are two light sources, each 
emi�ing light of two wavelengths (830 nm and 690 nm). D1 and D2 
are two detectors. Each probe consists of two source-detector pairs 
at 25 mm and two at 35 mm. Fig. 4. fNIRS headband 

two detectors. For each DS probe, data from all combinations of sources and detectors were collected, resulting in a total 
of four single-distance (SD) measurements of � and q (source-detector distances (d): two of 25 mm and two of 35 mm). 

Cognitive task performance. We measured the subject’s performance at the n-back task based on the accuracy of the 
subject’s response for each digit. During our pilot study, subjects were asked to press the space bar for targets. However, 
we found that when subjects were unsure whether a digit was a target, particularly as the value of = increased, they 
tended to skip it. Their non-response was recorded identically to an intentional response for a non-target number. In our 
updated experiment design, we incorporated both arrow keys in order to di�erentiate between intentional responses 
for non-targets and non-responses; pressing the correct arrow key for a digit was considered a correct response, while 
pressing the wrong arrow key or pressing no arrow key were considered incorrect responses. 

Subjective workload. We used the NASA-TLX as a measure of subjective workload. After each n-back task, subjects 
rated each dimension of workload in the NASA-TLX on a 21 point scale. 

Experiment log. The operator on duty logged any issues that happened during the experiment. This is an essential 
step which has been neglected by previous public biosensor and fNIRS datasets. fNIRS sensors are very sensitive to the 
environment and can be polluted by many factors. We require the operator to log issues such as interference from a 
subject’s hair and light leaking (often occurring when the shape of a subject’s forehead does not match the curve of 
the headband). We also ask the operator to report any DC intensity detector over-voltage warnings. The higher DC 
intensity we set, the better data we are able to collect; however, we want to avoid over-voltage and saturation, which 
may cause the fNIRS system to shut down automatically. 

Post-experiment interview. We asked 11 open-ended questions in a recorded interview. The questions targeted the 
subject’s physical comfort, emotions, and experience with the experimental tasks, testing interface, and hardware. 

Data exclusions. Of the 27 total subjects, 15 met all eligibility criteria for this work. The remaining 12 subjects’ data 
were excluded. Three subjects’ data were excluded because their performance at digit recognition during the n-back 
tasks was anomalous (two were too low, one was too high), indicating that their cognitive workload was di�erent than 
intended. Five subjects’ data were excluded because they received a di�erent range of fNIRS DC intensity settings 
than other subjects. Four subjects’ data were excluded because of abnormal oxygen dynamics which were always high 
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regardless of task di�culty levels. This was generally due to the subjects’ hair blocking the light sources or causing 
light leakage. Data for all included and excluded subjects are in the publicly released dataset. 

It is important to note that the exclusion criteria did not depend on any machine learning results, but only on 
factors that were observed before analyzing the data. We have re�ned our experimental procedure for subsequent 
data collection to reduce the light leakage problem. We will continue to screen for anomalously very good or very bad 
performance on the n-back task. 

Open source dataset release. All 27 subjects’ data are available at https://tufts-hci-lab.github.io/code_and_datasets. The 
15 subjects meeting all eligibility criteria are clearly marked. Released data include demographics, fNIRS measurements, 
n-back task performance, subjective workload, experimental logs, and post-experiment interviews. 

3.4 Data pre-processing 

O�ine (non-realtime) pre-processing techniques, such as sparse optimization [41, 48] or wavelet methods [1, 17, 33, 63], 
are often applied to remove artifacts from fNIRS data. However, we did not use these because our focus is exclusively 
on real-time methods. We applied the Dual-Slope (DS) method to pre-process the raw fNIRS data. DS analyses have 
been presented previously [13] and are described in detail in Appendix B. This method is advantageous (compared 
to Single-Distance (SD) methods typically used in fNIRS) because of its insensitivity to optical coupling and drifts, 
reduction of motion artifacts, and reduced sensitivity to super�cial tissue (i.e. preferential sensitivity to the brain). This 
can be applied for any probe that satis�es the DS geometrical requirements [12]. 

After this pre-processing, each of the 16 n-back tasks for each subject consisted of a multivariate time-series of 8 
measurements, each recorded at a sampling rate of 5.2084 Hz. The 8 measurements represent all possible combinations 
of sensor locations (left, right), chromophore concentrations (�1$ , �1'), and measured signal properties (phase, 
intensity). 

We chose not to normalize the pre-processed data. Even though normalization can often provide better o�ine 
classi�cation results, many methods for time series normalization cannot easily be applied in online (real-time) analysis, 
which is our ultimate goal. 

4 MACHINE LEARNING METHODOLOGY 

4.1 Classification task and data preparation 

Next, we sought to set up a supervised learning task. Our goal is to develop a prediction system that takes a ⇠ 2-second 
duration multivariate fNIRS signal as input, and produces a probabilistic prediction of the user’s current cognitive 
intensity category within that brief segment of time. As a proxy for intensity, we used the current value of = in the 
assigned n-back task. We chose this 2-second duration because we believe near-real-time workload classi�cation every 
2 seconds would produce useful and responsive interfaces. Furthermore, we suggest that any �ner resolution would be 
di�cult due to the inherent lag time between external stimuli and the oxygen dynamics in the brain measured by fNIRS. 

For each subject (indexed by 8), we assembled a labeled dataset representing , short-duration “windows”. In each 
(8)window (indexed by F ), we observed a time-series of ) fNIRS measurements G and a corresponding workload F,1:) 

(8) (8)intensity category label ~ 2 {0, 1, 2, 3}. The goal of our classi�er is to predict the value of workload label ~ given F F 
(8)the window’s fNIRS measurements G . Both the fNIRS measurements G and the cognitive workload labels ~ are F,1:) 

easily collected in our experiment because we know which =-back task the user was performing at any given time. In 
this study, we considered two possible classi�cation tasks: a binary classi�cation task where we want to distinguish 
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between 0-back versus 2-back (ignoring other values of =), and a four-class classi�cation task that distinguishes between 
0-back, 1-back, 2-back, and 3-back. 

We de�ne each window to be exactly ) = 10 timesteps in duration (at 5.2 Hz, each window is a ⇠2-sec. long). 
(8)Thus, each window’s measurements G represent exactly ) =10 timesteps of the multivariate fNIRS signal. At each F,1:) 

(8)timestep (indexed by C ) within the window, we observe a vector GF,C 2 R8. To generate the per-window feature vectors, 
we take in a subject’s raw time-series data and segment it with a sliding window of size 10 timesteps and a stride of 
3 timesteps, as shown in Figure 1. Each subject contributed exactly , = 2224 windows, evenly sampled between all 
possible values of =. 

Splitting data. For each subject 8 , we divide all available windows into a labeled training set and labeled test set that 
have no temporal overlap. We use a 1:1 train-test split: the �rst half of subject 8’s data in chronological order becomes 
subject 8’s training set, and the remaining data becomes subject 8’s test set. There are ,CA windows in the training set 
(8) (8) (8) (8) (8) (8)⇡ = {x , y }, and ,C4 windows in that subject’s test set ⇡ = {x , y }.CA C4 1:,CA 1:,CA (,CA +1) :(,CA +,C4 ) (,CA +1) :(,CA +,C4 )
Some methods can learn from other subjects too. For these methods, when training on subject 8 , we also make 

available a large labeled dataset of data from the 14 other subjects (indexed by 9 < 8). For each other subject, we include 
( 9) ( 9)all , available windows in dataset ⇡ ( 9) = {x }. To be clear, the test set is not touched until �nal evaluation. 1:, , y1:, 

In our later experiments reported in Tables 1 and 2, note that we compared using 100% of a target subject’s available 
training data to using only a fraction of that subject’s training data (50 %, 0%), in order to assess the model’s ability to 
reduce individual calibration time. 

Train/test splits for binary classi�cation. In binary classi�cation, our goal is to determine for a speci�c subject 
whether a given window of fNIRS measurements was obtained during a 0-back or 2-back task, which represent low and 
high workloads respectively. Both the train and test set have the same number of windows (,CA = 556, ,C4 = 556), 
evenly balanced between = = 0 and = = 2 labels. Only windows collected during 0-back and 2-back tasks are included. 

Train/test splits for four-class classi�cation. In four-class classi�cation, we classify each window as either 
0-back, 1-back, 2-back or 3-back. Again, train and test sets are balanced with the same size (,CA = 1112, ,C4 = 1112). 

4.2 3-phase training approach 

Motivated by the widespread success of deep learning in many prediction tasks involving time series, we wish to pursue 
a deep learning approach for producing a predicted label probability vector given an observed window of fNIRS data 
(8)G . For this study, we use a convolutional neural net (CNN) [21], with 1 convolutional layer followed by 2 fully F,1:) 

connected layers (fully described in Sec. C.1). This approach builds on a growing literature which suggests that CNNs 
are successful for BCI applications [23, 30, 37, 52, 65]. 

However, while common wisdom suggests that deep neural networks (and especially CNNs) can deliver superior 
performance over manually-engineered feature representations of fNIRS data, gains from deep learning often only 
appear when the number of labeled examples available for training is quite large. After carefully processing our dataset 
to perform cognitive workload classi�cation, only about 5-10 minutes of labeled training data are available for each 
subject. We thus face a challenge of limited labeled data. While several previous works have pursued CNNs for fNIRS, 
our contribution is a new 3-phase approach to train CNNs that can overcome limited available labeled data to deliver 
improved heldout accuracy. 

Our proposed 3-phase approach (illustrated in Figure 5) involves two key ideas. First, we can pretrain a CNN classi�er 
on a large labeled set gathered from multiple subjects, and then �ne-tune this classi�er on a labeled set speci�c to 
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.....

Target Subject
size: 1

Pre-exist Subjects
size: M

Synthetic Subjects
size: K*M

...

MixUp
Phase1: Synthetic

subjects pretraining

Phase2: Group training

Phase3: Individual
calibration

model parameters

model parameters

Fig. 5. Illustration of our proposed 3-phase approach to training CNNs to classify cognitive workload from short windows of fNIRS 
time-series data. A�er each phase, the resulting CNN parameters are passed on to initialize the next phase. 

the target subject. Second, we can boost performance even more by pretraining on an even larger arti�cial labeled set 
assembled via MixUp data augmentation. 

Our goal is to train a personalized classi�er for subject 8 . We have access to two training sets: the target subject’s 
(8)training dataset ⇡ , as well as the aggregation of full datasets from the 14 other subjects {⇡ ( 9 ) } 9 <8 . We make use CA 

of each dataset in di�erent phases. All phases use the same CNN network architecture and are related to each other 
by passing values of the CNN parameters. The �rst phase is initialized randomly. Then, each subsequent phase is 
initialized to the learned parameters produced by the previous phase. In this way, each phase provides a “warm start” to 
its successor. 

Each phase can be summarized as follows: 

(1) Phase 1: Train on augmented data from non-target subjects. In the �rst phase, we use the 14 other subjects 
{⇡ ( 9) } 9<8 as source data. We apply a data augmentation technique known as MixUp [68] to these source examples, 
to create a larger synthetic dataset with the e�ective size of up to 112 subjects from our collection. We then train 
our CNN on this augmented dataset. The goal of this �rst phase is to learn coarsely useful representations of 
human brain signals. This augmentation is fully-described in Sec. 4.3. 

(2) Phase 2: Train on observed data from non-target subjects. In the second phase, we train our CNN on the 
observed data from the 14 other subjects {⇡ ( 9) } 9 <8 . The goal for this second phase is to leverage other subjects’ 
data to further improve learned representations. Like phase 1, we expect improved representations from this 
stage because human brains share some commonalities. 

(3) Phase 3: Personalize on training data from target subject. In the �nal phase, we train our CNN on the 
(8)target subject’s training set ⇡ . This stage is often called �ne-tuning because while previous stages learn from CA 

many subjects, this phase specializes exclusively to the speci�c subject 8 of interest. Fine-tuning allows the model 
to adapt to speci�c characteristics of subject 8 . 

We deliberately separate phase1 and phase2, so that each phase has a clear and disentagled purpose. Our later results 
will show that our 3-phase approach leads to a signi�cant performance improvement compared to common methods 
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that would use only the data speci�c to the target subject. We emphasize that in our experiments, to make the best use 
of available data, we specialize all 3 phases to each subject (indexed by 8). That is, the source pool of “other” subjects 
used in Phase 1 and Phase 2 is distinct for each value of 8 . In a deployment scenario, we could use all available previous 
subjects as a common pool for the �rst two phases. This would require only training the last phase for a new subject. 

4.3 Data augmentation for Phase 1 

MixUp [68] is a data augmentation technique that constructs new augmented labeled examples G 0 ,~ 0 from a pair of 
existing labeled examples G0,~0 and G1 ,~1 . The new samples are created by linearly interpolating between both the 
feature vectors as well as the one-hot label indicator vectors. The method has been successfully used in many supervised 
learning and semi-supervised learning tasks [6, 10, 14, 16, 18, 26, 62, 69]. MixUp and many other data augmentation 
techniques have been mostly applied in the image classi�cation domain, with only a few emerging attempts in the 
BCI domain [24, 34]. In this study, we show that MixUp can be used on fNIRS data to create arti�cial samples that 
noticeably boost model performance. 

To produce a synthetic fNIRS dataset in phase 1 when our target subject has index 8 , we repeatedly sample two 
di�erent subject indices 0 and 1 uniformly at random from the available subjects represented in our phase 1 training 
data {⇡ ( 9) } 9 <8 . We then visit each window F available from subject 0 in temporal order, and mix that window with the 

0 0 corresponding window from subject 1, to produce a new synthetic window with features G and label indicator ~ 1:) 
using sampled interpolation weight _ 2 [0, 1]: 

0 (0) (1) 0 (0) (1)G1:) = _GF,1:) + (1 � _)GF,1:) , ~ = _~ + (1 � _)~ , _ = max(_ 0 , 1 � _ 0), _ 0 ⇠ Beta(U, U). (1)F F 

Hyperparameter U > 0 controls how distinct the new sample will be from its sources, with larger values producing 
G 0 values more likely to be further from the sources. Because we chose the same window in temporal order for both 
subjects, the source labels will be the same (~ (0) = ~ (1) ) and thus the synthetic label ~ 0 will be the same. 

We emphasize that we are careful to use the same window from both chosen subjects, while a standard MixUp 
implementation might sample di�erent windows for subject 0 and subject 1. We suspect that using the same window 
will produce more “realistic” samples, because it keeps the labels the same and will preserve global trends in how 
subject’s response change over the course of data collection. 

4.4 Baselines and experimental protocol 

We consider several possible baseline methods to compare to our proposed 3-phase pipeline: 

• Subject-Speci�c CNN. This baseline CNN uses the same architecture as our 3-phase approach, but is trained 
on only the target subject’s data. E�ectively, this is only “Phase 3” in our approach, omitting the �rst two phases. 

• Last-2-Phases CNN. This baseline omits the �rst phase (MixUp augmentation). It starts by pre-training on the 
data from all other subjects (as in Phase 2), and then �ne-tunes on the training set for subject 8 (as in Phase 3). 
Comparisons to this baseline let us directly assess how much MixUp helps. 

• Subject-Speci�c Logistic Regression (LR) and Random Forest (RF) Classi�ers. These two baselines use 
simpler non-neural classi�ers which consume a hand-engineered feature vector meant to summarize the observed 

(8)multivariate time-series window of fNIRS measurements G , as in [4, 28]. Comparisons to these two baselines F,1:) 
let us assess how much using a CNN deep learning approach helps. 
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(a) Two-class workload classi�cation task (b) Four-class workload classi�cation task 

Fig. 6. Test accuracy comparison across 15 possible target subjects for binary classification (le�, 0-back vs. 2-back) and four-class 
classification (right, 0- vs. 1- vs. 2- vs. 3-back). Each dot reports one subject’s accuracy using our 3-phase method (y-axis) and the 
logistic regression (LR) baseline (x-axis). 

All considered prediction methods require careful hyperparameter search to avoid over�tting and achieve good 
generalization performance. For each method, we perform a search over several candidate hyperparameter values 
(intended to cover a range of settings including both under-�tting and over-�tting). For each method and each target 
subject 8 , we select the hyperparameter setting that achieves the best validation accuracy, averaged across 5-folds 

(8)of cross-validation. When dividing the target subject’s training set ⇡ into 5 folds, we make sure the folds are CA 
chronologically distinct to avoid overlapping windows that would cause information leakage between the training and 
heldout data in one train/test split. We ensure that each fold’s data comes exclusively from a di�erent, non-overlapping 
time interval in the original data collection sequence. For details on the hyperparameter search for each method, see 
Appendix C. 

After selecting a preferred hyperparameter con�guration, we have 5 separate CNN models corresponding to the 
chosen hyperparameter values for subject 8 (one for each of the cross-validation folds). To make predictions on new test 
data, we average the probabilistic predictions produced by these 5 models. 

5 RESULTS 

We now present and interpret our experimental results, comparing the proposed 3-phase paradigm for training 
subject-speci�c classi�ers to other approaches. Here, we focus on performance averaged across all 15 subjects in our 
leave-one-subject-half-out design (each target subject’s �rst half of data is available for training, the rest for test). For 
subject-speci�c performance information, see Appendix F. 

Binary classification results. Our �rst experiments examine the binary cognitive workload classi�cation task: 0-back 
vs. 2-back (low versus high work load, respectively). Table 1 compares test set accuracy (averaged across subjects) of 
several possible ML pipelines. We can see that our 3-phase approach improves binary classi�cation performance over 
all subject-speci�c baselines (3-phase achieves 71.6% accuracy vs. 62.8% for CNN, 57.7% for random forests, and 61.6% 
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Labeled Trai
From Other Subjects 

ning Data Used 
From Target Subj. Phases Model 

Acc. on Test Set 
(avg. over 15 subj.) 

0 
0 
0 

14 subj., 5 min. each 

5.0 min. (100% train set) 
5.0 min. (100% train set) 
5.0 min. (100% train set) 
5.0 min. (100% train set) 

3 (subj.-speci�c only) 
3 (subj.-speci�c only) 
3 (subj.-speci�c only) 
2 + 3 

LR 
RF 
CNN 
CNN 

61.64 (55.53, 68.05) 
57.70 (52.84, 63.01) 
62.75 (58.60, 67.24) 
67.00 (62.61, 71.73) 

14 subj., 5 min. each 
14 subj., 5 min. each 
14 subj., 5 min. each 

5.0 min. (100% train set) 
2.5 min. ( 50% train set) 

0 min. ( 0% train set) 

1 + 2 + 3 
1 + 2 + 3 
1 + 2 

CNN 
CNN 
CNN 

71.63 (66.97, 76.46) 
65.04 (60.52, 69.69) 
55.61 (50.98, 60.54) 

Table 1. Results from binary classification of cognitive workload (0-back vs 2-back) given 2-second segments of fNIRS measurements. 
We report the average accuracy across 15 subjects. Values in parentheses indicate the 2.5th and 97.5th percentiles from 5000 bootstrap 
samples. A system that guesses at random would have 50% accuracy. LR = logistic regression, RF = random forest, CNN = convolutional 
neural network. 

Labeled Trai
From Other Subjects 

ning Data Used 
From Target Subj. Phases Model 

Acc. on Test Set 
(avg. over 15 subj.) 

0 
0 
0 

14 subj., 10 min. each 

10 min. (100% train set) 
10 min. (100% train set) 
10 min. (100% train set) 
10 min. (100% train set) 

3 (subj.-speci�c only) 
3 (subj.-speci�c only) 
3 (subj.-speci�c only) 
2 + 3 

LR 
RF 
CNN 
CNN 

27.18 (24.23, 30.10) 
26.65 (23.29, 30.15) 
27.90 (26.26, 29.63) 
32.96 (30.48, 35.48) 

14 subj., 10 min. each 
14 subj., 10 min. each 
14 subj., 10 min. each 

10 min. (100% train set) 
5 min. ( 50% train set) 
0 min. ( 0% train set) 

1 + 2 + 3 
1 + 2 + 3 
1 + 2 

CNN 
CNN 
CNN 

37.46 (34.26, 40.80) 
35.40 (32.70, 38.03) 
26.52 (24.84, 28.43) 

Table 2. Results from four-class classification of cognitive workload (0-back vs 1-back vs 2-back vs 3-back) given 2-second windows of 
fNIRS measurements. We report the average accuracy across 15 subjects, plus the 2.5th and 97.5th percentiles of 5000 bootstrap 
samples of test set performance. A system that guesses at random would have 25% accuracy. 

for logistic regression). Fig 6(a) visualizes the accuracy gains for each of the 15 subjects from our 3-phase pipeline over 
the logistic regression baseline. 

Four-class classification results. Table 2 compares test set accuracy (averaged across subjects) on the more challenging 
task of four-class workload classi�cation. Again, we can see that our 3-phase approach signi�cantly improves four-class 
classi�cation performance over subject speci�c baselines (our 3-phase achieves 37.46% compared to the near-chance 
performance of 27.90% for subject-speci�c CNN, 26.65% for RF, and 27.18% for LR). Fig 6(b) visualizes accuracy gains for 
each of the 15 subjects from our 3-phase pipeline over the logistic regression (LR) baseline. 

External dataset binary classification results. As an additional validation of our method, we apply our classi�cation 
pipeline to the open-access TU-Berlin fNIRS dataset containing 26 subjects [54]. We pursue binary workload classi�cation 
(0-back vs. 2-back). Our 3-phase approach improves baseline subject-speci�c test accuracy from 60.80 % to 70.69%. 
Appendix D.1 details our experimental protocol and results. 

The paragraphs below summarize the major conclusions we draw from these experiments. 

Pretraining on other subjects – as in Phase 2 – improves performance over only using subject-specific data. 
In both Table 1 (binary classi�cation) and Table 2 (four-class classi�cation), we see consistent gains from our Phase 2, 
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Fig. 7. Binary Classification Accuracy as Subj.-Specific Train-
ing Data Grows: Y-axis indicates test set accuracy averaged across 
15 possible target subjects. X-axis indicates the percentage of avail-
able training data used. Shaded regions show the 2.5th and 97.5th 
percentiles from 5000 bootstrap samples. 

Fig. 8. Four-class Classification Accuracy as Subj.-Specific 
Training Data Grows: Y-axis indicates test set accuracy aver-
aged across 15 possible target subjects. X-axis gives the percentage 
of training data used. Shaded regions show the 2.5th and 97.5th 
percentiles of 5000 bootstrap samples. 

which uses observed data from other subjects. Our binary classi�er improves from 62.75% to 67.00% by adding this 
phase; four-class classi�cation improves from 27.90% to 32.96%. 

Pretraining on synthetic data first – as in Phase 1 – improves performance even further. This is noticeable in 
both Table 1 and Table 2. For binary classi�cation, after adding the MixUp phase we see accuracy improve from 67.00% 
(row “2 + 3”) to 71.63% (row “1 + 2 + 3”). For four-class classi�cation, we see improvements from 32.96% (row “2 + 3”) to 
37.46% (row “1 + 2 + 3”). 

Our 3-phase approach can be e�ective even with far less subject-specific data. Table 1 (binary classi�cation) 
shows that even with only 2.5 minutes of subject-speci�c training data, our 3-phase approach can outperform subject-
speci�c methods given double that amount of training data from the same session. Figure 7 and Figure 8 further show 
this visually, plotting average accuracy as a function of the amount of subject-speci�c data our method is given. This 
demonstrates our method’s e�ectiveness in reducing individual calibration e�ort, long known to be a challenge in BCI 
applications. 

Subject-specific calibration is needed. We have tried building general-purpose “subject-independent” models, 
which use the �rst two phases of our pipeline but use no training data for the target subject (see rows marked “1 + 
2” in Table 1 and Table 2). We �nd performance is rarely better than random guessing: 55.61% accuracy for binary 
classi�cation, 26.52% accuracy for four-class classi�cation. 

6 SUPPLEMENTARY RESULTS 

We used the demographic and contextual information (see Appendix A.3), experiment log (see Appendix A.4), and 
post-experiment interview (see Appendix A.5) to determine which subjects met our eligibility criteria and to make note 
of any factors during the experiment that may have a�ected the signal quality or subjects’ task performance. We used 
the performance results (see Appendix A.1) and subjective workload results (see Appendix A.2) to con�rm that the 
di�erent levels of =-back tasks induced di�erent amounts of mental workload. All of these data are available in our 
open-access release and can be used for future studies. 
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7 CONCLUSION 

We have presented new tools and a new dataset intended to allow future researchers and designers to create and explore 
fNIRS-based BCI applications more easily. Some examples of the implications for design of this work are found in such 
previous experimental fNIRS-based systems as: Brainput for robot automation [56], air tra�c control [2], music learning 
[67], and bubble cursor usage [3]. We provide a new fNIRS dataset collected using rigorous procedures from subjects 
performing a standard n-back cognitive task and show how it can be used to improve performance for future systems. 
We developed a new machine learning approach to process and utilize fNIRS data. We show from our experiments 
that our proposed 3-phase machine learning pipeline signi�cantly improves n-back task classi�cation performance 
over several established baselines. Moreover, even with a reduced amount of per-user training data, our approach still 
outperforms baseline models trained with all available target-subject-speci�c training data, showing the potential of 
reducing individual calibration e�ort when deploying BCI applications in the future. We hope that our new dataset, 
machine learning method, and tools will remove barriers that have prevented a wider range of researchers from using 
fNIRS-based BCI and facilitate the development of a new generation of powerful and easy to use brain-computer 
interfaces. 
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Appendices 

A SUPPLEMENTARY RESULTS 

A.1 Performance 

We calculated the average and standard deviation of accuracy of all four types of n-back tasks for both subject groups. 
The results show a negative correlation between = (0, 1, 2, 3) and accuracy, which con�rms that the n-back tasks were 
an e�ective way to induce di�erent di�culty levels under the control environment. For detailed results, see Table A.1. 

Paradigm Measurement Quali�ed Subjects All Subjects 
0-back Avg 0.971 0.968 
1-back Avg 0.958 0.962 
2-back Avg 0.873 0.886 
3-back Avg 0.791 0.797 
0-back SD 0.129 0.136 
1-back SD 0.045 0.042 
2-back SD 0.095 0.088 
3-back SD 0.076 0.108 

Table A.1. Task specific mean and standard deviation of n-back task performance for both subject group 

A.2 Subjective workload 

The mental demand dimension of the NASA-TLX can be interpreted as a measurement of perceived mental workload. We 
observed that for both groups, the n-back tasks with larger = values were rated signi�cantly more mentally demanding. 
For the eligible subjects, the mean values of reported mental demand for 3-back, 2-back, 1-back and 0-back tasks are 
12.63, 7.73, 3.68 and 0.58 respectively. A subsequent C-test also shows signi�cant di�erence between 0-backs and 2-backs 
(C = �15.43, ? < 0.001) in a binary classi�cation scenario. 

Table A.2 and A.3 show the detailed average and standard deviation for both subject groups on each n-back task. For 
detailed C-test results between 0-backs and 2-backs on four components of NASA-TLX for both subject groups, see 
Table A.4. 
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Paradigm Measurement Mental Demand Performance (the larger the worse) E�ort Frustration 
0-back Avg 0.58 0.92 1.08 1.06 
1-back Avg 3.68 3.58 4.17 2.70 
2-back Avg 7.73 8.62 8.52 5.65 
3-back Avg 12.63 14.00 12.40 8.80 
0-back SD 1.41 2.84 2.56 2.74 
1-back SD 3.18 3.51 3.18 3.12 
2-back SD 3.27 3.82 3.46 3.80 
3-back SD 3.83 3.31 3.35 5.22 

Table A.2. Task specific mean and standard deviation of NASA TLX for qualified subjects 

Paradigm Measurement Mental Demand Performance (the larger the worse) E�ort Frustration 
0-back Avg 0.88 1.53 1.27 1.61 
1-back Avg 4.15 4.06 4.57 3.38 
2-back Avg 8.36 8.42 8.88 6.39 
3-back Avg 13.16 13.32 12.88 9.65 
0-back SD 1.56 3.64 2.28 2.77 
1-back SD 3.07 3.86 3.15 3.15 
2-back SD 3.69 3.88 3.75 4.07 
3-back SD 3.72 3.99 3.51 5.40 

Table A.3. Task specific mean and standard deviation of NASA TLX for all subjects 

t test Subject Group Mental Demand Performance (the larger the worse) E�ort Frustration 
t Quali�ed -15.43 -12.44 -13.25 -7.51 
p Quali�ed <0.001 <0.001 <0.001 <0.001 
t All -19.35 -13.40 -17.95 -10.14 
p All <0.001 <0.001 <0.001 <0.001 

Table A.4. Binary 0-back and 2-back T-test result of NASA-TLX for both subject groups 

A.3 Demographics 

A total of twenty seven subjects (18 females, mean age of 20, SD of 2.3) participated in the study. A subset of 15 subjects 
are quali�ed (13 females, mean age of 19.9, SD of 2.8). All the subjects are right-handed. One eligible subject and 3 
ineligible subjects reported recreational drug (marijuana or alcohol) usage in the past week. All the subjects are healthy 
without any head injury history. For detailed information, see our open access dataset. 

A.4 Experiment log 

All the conditions mentioned are recorded (see our open access dataset for details). 
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A.5 Post-experiment interview 

All the conditions mentioned are recorded (see our open access dataset for details). 

B DATA-PREPROCESSING METHOD 

A measurement of SD � ((⇡� (d, _) = ;=(d2� (d, _))) or SD q ((⇡q (d, _) = q (d, _)) will be referred to as (⇡. for 
simplicity. The average slope of (⇡. versus d in the DS set (⇡(. ) is calculated: ✓ ◆

1 (⇡.1 (d2, _) � (⇡.1 (d1, _) (⇡.2 (d2, _) � (⇡.2 (d1, _)⇡(. (_) = + (2)
2 d2 � d1 d2 � d1 

where (⇡.8 (d 9 ) is the 8C⌘ SD measurement at d 9 . This ⇡(. (_) is measured during a baseline period to yield ⇡(.0 (_). 
Changes from this baseline (�⇡(. (_, C) = ⇡(. (_, C) � ⇡(.0 (_)) were used to calculate �`0,. (_, C) at time C : 

�⇡(. (_, C)
�`0,. (_, C) = � (3)

⇡(�. (_)
where ⇡(�. (_) is the di�erential slope factor [13] which depends on the absolute optical properties of the tissue. An 
absorption coe�cient of `0 = 0.01 1/mm and a reduced scattering coe�cient of ` 0 = 1 1/mm were assumed for each B 
wavelength. Finally, �[�1$]. (C) and �[�1']. (C) were calculated: " #�1 " # " # 

n [�1$ ] (_1) n [�1' ] (_1) �`0,. (_1, C) �[�1$]. (C)= (4)
n [�1$ ] (_2) n [�1' ] (_2) �`0,. (_2, C) �[�1']. (C) 

where n⇠ (_8 ) is the extinction coe�cient for chromophore ⇠ at wavelength _8 [11]. All further analyses utilized these 
DS-derived changes of chromophore concentrations (i.e. [�1$]. (C) and [�1']. (C)) as input. 

C MACHINE LEARNING AND DEEP LEARNING SETTINGS 

C.1 CNN details. 

For all methods that use a CNN, we use the same architecture with 1 convolutional layer followed by 2 fully connected 
layers. We search 3 values (2, 4, 6) for the �lter size of the convolutional layer, 3 values (1, 2, 3) for the �lter stride of the 
convolutional layer, 3 values (10, 20, 40) for the output size of the convolutional layer, and 3 values (10, 20, 40) for the 
size of the fully connected layers. 

To avoid over�tting, we apply dropout [59] after the fully connected layer. To give the subject-speci�c baseline CNN 
more advantage, we search three possible dropout values (0.2, 0.5, and 0.7), while for our 3-phase approach, we �x the 
dropout rate at 0.2. 

We train all CNNs using empirical risk minimization with the cross-entropy loss. Parameters are estimated via 
stochastic gradient descent optimizer with a �xed momentum of 0.9. We search SGD’s learning rate in (0.003, 0.01, 0.3). 
Our CNN implementation uses the PyTorch software framework [45]. 

C.2 Augmentation details. 

For methods that involve the �rst data augmentation phase, we search 3 values (0.3, 0.75, 0.9) for the alpha value of beta 
distribution and 3 values (2, 4, 8) that control how many times we expand the dataset, leading to 28, 56 or 112 synthetic 
subjects in Phase 1. 
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C.3 Logistic Regression details. 

To obtain features for Logistic Regression (LR), we summarize the time-series for each window F and each channel 
3 with four numbers: the mean, the standard deviation and the slope and intercept of a linear regression �t to the 
measurements over time (minimizing squared error). 

To train LR, we perform penalized empirical risk minimization using the cross-entropy loss function and an L2-penalty 
on the weight coe�cients. Parameters are estimated via the L-BFGS algorithm. We search 11 possible values for the L2 
penalty strength, logarithmically spaced from -5 to 5. All other settings use the defaults in the SciKit-Learn software 
package [46]. 

C.4 Random Forest details. 

To obtain features for Random Forest (RF) classi�er, like we did for LR, we summarize the time-series for each window 
F and each channel 3 with four numbers: the mean, the standard deviation and the slope and intercept of a linear 
regression �t to the measurements over time (minimizing squared error). 

We search 3 values (100, 500, 1000) for number of estimators, which controls how many tree estimators are used 
in the forest, 4 values (1, 5, 10, 20) for the minimum number of samples required to split an internal node. All other 
settings use the defaults in the SciKit-Learn software package [46]. 

D VALIDATION OF OUR PIPELINE ON AN EXTERNAL DATASET 

Here, we present the results of our cross-subject pipeline on the only other open-access fNIRS cognitive workload 
dataset we’re aware of, a 26 subject dataset that measures fNIRS performance on n-back tasks released by Shin et al. 
[54]. 

The dataset contains the fNIRS data of 27 tasks, 9 tasks for each of 0-back, 2-back and 3-back tasks. Each task consists 
of 765 rows and 32 features. This dataset is not suitable for the Dual-Slope pre-processing algorithm we used for our 
dataset. We generate slide windows with the window size of 20 timesteps and the window stride of 3 timesteps to make 
each window cover the data in ⇠2 seconds, the same as the experiment on our own dataset. 

In the binary classi�cation, we use the 10 tasks (5 0-back tasks and 5 2-back tasks) as the training set and test the 
model on 8 tasks (4 0-backs and 4 2-backs). 

Paradigm Model Avg. Acc on Target Subj.’s Test Set 
Subj.-Speci�c CNN 60.80 
Last 2-phase CNN 68.65 

3-phase CNN 70.69 
Table D.1. Binary classification result on external dataset 

E LATIN SQUARE OF EXPERIMENT TASK SEQUENCE 

Below we present the Latin square applied in n-back task experiment design. It is a 4 × 4 array �lled with 4 di�erent 
n-back tasks (0, 1, 2, and 3), each occurring exactly once in each row and exactly once in each column. 
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0, 1, 2, 3 1, 2, 3, 0 2, 3, 0, 1 3, 0, 1, 2

Fig. E.1. All subjects completed 16 =-back tasks; each value of = was determined according to this order. 

F DETAILED CLASSIFICATION RESULTS BY SUBJECT 

Below we show the detailed classi�cation results for each subject for all methods compared. F.1 shows the binary 
classi�cation results. F.2 shows the four-class classi�cation results. 

Labeled Training Data Used 
From Other Subjects From Target Subj. Paradigm Model Sub1 Sub2 Sub3 Sub4 Sub5 

0 5 min. (100% train set) Subj.-Speci�c Logistic Regression 79.68 72.66 46.94 54.86 62.59 
0 5 min. (100% train set) Subj.-Speci�c Random Forest 80.04 75.54 47.84 53.06 51.08 
0 5 min. (100% train set) Subj.-Speci�c CNN 76.44 66.01 64.93 53.06 58.63 

14 subjects, 5 min. each 5 min. (100% train set) Last 2-phase CNN 76.08 67.99 51.80 56.47 60.61 
14 subjects, 5 min. each 5 min. (100% train set) 3-phase CNN 78.06 74.10 62.95 58.45 64.21 
14 subjects, 5 min. each 2.5 min. ( 50% train set) 3-phase CNN 76.62 80.58 54.86 50.90 56.83 
14 subjects, 5 min. each 0 min. ( 0% train set) First 2-phase CNN 55.94 50.18 71.58 48.02 72.84 

Sub6 Sub7 Sub8 Sub9 Sub10 
0 5 min. (100% train set) Subj.-Speci�c Logistic Regression 49.82 65.29 51.80 52.70 87.77 
0 5 min. (100% train set) Subj.-Speci�c Random Forest 54.68 39.75 55.76 51.26 61.69 
0 5 min. (100% train set) Subj.-Speci�c CNN 57.37 73.38 58.99 53.96 63.67 

14 subjects, 5 min. each 5 min. (100% train set) Last 2-phase CNN 65.83 72.84 62.23 56.12 70.50 
14 subjects, 5 min. each 5 min. (100% train set) 3-phase CNN 72.66 72.30 62.59 57.91 82.19 
14 subjects, 5 min. each 2.5 min. ( 50% train set) 3-phase CNN 66.19 73.38 57.19 59.71 62.41 
14 subjects, 5 min. each 0 min. ( 0% train set) First 2-phase CNN 46.40 41.37 50.00 58.09 53.23 

Sub11 Sub12 Sub13 Sub14 Sub15 
0 5 min. (100% train set) Subj.-Speci�c Logistic Regression 70.68 58.27 52.52 45.50 73.56 
0 5 min. (100% train set) Subj.-Speci�c Random Forest 57.37 55.58 55.00 67.09 59.71 
0 5 min. (100% train set) Subj.-Speci�c CNN 79.68 57.55 50.00 57.91 69.60 

14 subjects, 5 min. each 5 min. (100% train set) Last 2-phase CNN 88.67 66.01 75.36 63.85 70.68 
14 subjects, 5 min. each 5 min. (100% train set) 3-phase CNN 89.03 68.35 87.05 69.78 74.82 
14 subjects, 5 min. each 2.5 min. ( 50% train set) 3-phase CNN 54.32 66.01 76.98 67.81 71.76 
14 subjects, 5 min. each 0 min. ( 0% train set) First 2-phase CNN 50.00 66.01 48.38 53.78 68.35 

Table F.1. Subject specific performance for Binary classification 
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Labeled Training Data Used 
From Other Subjects From Target Subj. Paradigm Model Sub1 Sub2 Sub3 Sub4 Sub5 

0 10 min. (100% train set) Subj.-Speci�c Logistic Regression 36.33 38.04 19.42 25.27 23.20 
0 10 min. (100% train set) Subj.-Speci�c Random Forest 40.74 37.86 23.47 26.08 26.98 
0 10 min. (100% train set) Subj.-Speci�c CNN 33.54 26.89 34.17 26.26 27.79 

14 subjects, 10 min. each 10 min. (100% train set) Last 2-phase CNN 39.39 36.24 29.68 28.24 33.0.9 
14 subjects, 10 min. each 10 min. (100% train set) 3-phase CNN 49.19 38.94 33.99 32.64 35.88 
14 subjects, 10 min. each 5 min. ( 50% train set) 3-phase CNN 46.58 41.82 38.49 30.58 37.41 
14 subjects, 10 min. each 0 min. ( 0% train set) First 2-phase CNN 26.62 25.63 31.74 27.88 35.52 

Sub6 Sub7 Sub8 Sub9 Sub10 
0 10 min. (100% train set) Subj.-Speci�c Logistic Regression 31.03 24.55 25.00 25.09 33.63 
0 10 min. (100% train set) Subj.-Speci�c Random Forest 21.40 14.93 29.32 25.81 29.05 
0 10 min. (100% train set) Subj.-Speci�c CNN 25.09 22.48 25.09 24.91 28.24 

14 subjects, 10 min. each 10 min. (100% train set) Last 2-phase CNN 28.06 25.54 25.54 31.56 32.10 
14 subjects, 10 min. each 10 min. (100% train set) 3-phase CNN 37.05 35.79 25.27 30.49 36.87 
14 subjects, 10 min. each 5 min. ( 50% train set) 3-phase CNN 32.28 39.21 36.87 25.90 35.70 
14 subjects, 10 min. each 0 min. ( 0% train set) First 2-phase CNN 24.82 21.22 29.14 23.56 23.65 

Sub11 Sub12 Sub13 Sub14 Sub15 
0 10 min. (100% train set) Subj.-Speci�c Logistic Regression 28.60 23.92 16.37 27.34 29.95 
0 10 min. (100% train set) Subj.-Speci�c Random Forest 17.36 23.83 31.56 30.22 21.13 
0 10 min. (100% train set) Subj.-Speci�c CNN 27.43 26.17 28.68 27.79 33.90 

14 subjects, 10 min. each 10 min. (100% train set) Last 2-phase CNN 38.85 34.53 32.28 36.15 42.36 
14 subjects, 10 min. each 10 min. (100% train set) 3-phase CNN 45.32 30.22 46.58 38.49 45.14 
14 subjects, 10 min. each 5 min. ( 50% train set) 3-phase CNN 34.71 26.98 31.03 36.06 37.32 
14 subjects, 10 min. each 0 min. ( 0% train set) First 2-phase CNN 28.96 24.10 25.81 26.35 22.84 

Table F.2. Subject specific performance for Four-Class classification 

G CONFUSION MATRIX FOR FOUR-CLASS CLASSIFICATION 

Figure G.1 shows the confusion matrix of each subject for our proposed 3-phase approach on four-class classi�cation 
(corresponding to the scenario in the 5th row in Figure 2). 
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(a) sub_1 (b) sub_2 (c) sub_3 

(d) sub_4 (e) sub_5 (f) sub_6 

(g) sub_7 (h) sub_8 (i) sub_9 
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(j) sub_10 (k) sub_11 (l) sub_12 

(m) sub_13 (n) sub_14 (o) sub_15 

Fig. G.1. Confusion matrices for four-class classification using the 3-phase approach. Each subfigure is the confusion matrix of a 
subject. The subject’s model is trained with 100% of the subject’s train data. 
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