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Abstract
We address the problem of modeling constrained hospital resources in the midst of the
COVID-19 pandemic in order to inform decision-makers of future demand and assess the
societal value of possible interventions. For broad applicability, we focus on the common
yet challenging scenario where patient-level data for a region of interest are not available.
Instead, given daily admissions counts, we model aggregated counts of observed resource
use, such as the number of patients in the general ward, in the intensive care unit, or on
a ventilator. In order to explain how individual patient trajectories produce these counts,
we propose an aggregate count explicit-duration hidden Markov model, nicknamed the
ACED-HMM, with an interpretable, compact parameterization. We develop an Approxi-
mate Bayesian Computation approach1 that draws samples from the posterior distribution
over the model’s transition and duration parameters given aggregate counts from a spe-
cific location, thus adapting the model to a region or individual hospital site of interest.
Samples from this posterior can then be used to produce future forecasts of any counts
of interest. Using data from the United States and the United Kingdom, we show our
mechanistic approach provides competitive probabilistic forecasts for the future even as
the dynamics of the pandemic shift. Furthermore, we show how our model provides insight
about recovery probabilities or length of stay distributions, and we suggest its potential to
answer challenging what-if questions about the societal value of possible interventions.

1. Introduction

The ongoing COVID-19 pandemic has imposed immense costs to human health, quality
of life, and the economy. There remains a pressing need for forecasting models that can
reliably predict demand for scarce hospital resources, such as general-ward beds, ICU beds,
ventilators, and clinical staff. It is especially important that models are likely to extrapolate
to the future rather than simply repeat the past, as the pandemic evolves through new

1. Code: https://www.github.com/tufts-ml/aced-hmm-hospitalized-patient-trajectory-model

© Last updated: 2021-04-28 G.M. Visani, A.H. Lee, C. Nguyen, D.M. Kent, J.B. Wong, J.T. Cohen & M.C. Hughes.

https://www.github.com/tufts-ml/aced-hmm-hospitalized-patient-trajectory-model


ABC for an Explicit-Duration HMM of COVID-19 Hospital Trajectories

waves, new treatments, new disease variants, and the introduction of vaccines. This need
naturally favors mechanistic models that try to capture how patients actually move through
the hospital, rather than purely predictive models. Mechanistic forecasts with well-calibrated
uncertainty may avoid the failures of previous COVID-19 forecasting (Ioannidis et al., 2020).

In addition to their obvious utility to hospital administrators, improved forecasting
for hospital resources can also be used to assess the societal value of possible interven-
tions. Throughout this pandemic, many interventions have been considered to improve
outcomes for infected and hospitalized individuals, such as screening strategies, pharmaceu-
ticals (Beigel et al., 2020; Chen et al., 2021), physical treatments (Koeckerling et al., 2020),
and more (Zhang et al., 2020; Ahamad et al., 2021). However, estimating the societal value
of interventions remains challenging, as they can impact many different stages of care.

Our motivating problem is to assess which interventions might avoid short-term future
demand exceeding hospital capacity, as aggressive shut-downs harm other aspects of health,
reduce quality of life, and restrict economic activity (Neumann et al., 2020). Policy makers,
pharmaceutical companies, and funding agencies can use forecasting models to identify inter-
ventions to prioritize; such models can also inform health technology assessment and hence
questions of reimbursement. But a forecast can shed light on these issues only if the model
supports “what-if ” queries about how an intervention would change patient trajectories and
if the model can be adapted to the hospital dynamics in the region of interest.

In this work, we develop and evaluate a mechanistic probabilistic model of a COVID-19
patient’s trajectory through stages of care in the hospital. This model can be used to make
data-driven forecasts of the future daily census counts at different stages of care. That
is, we can model the total count of patients in general ward, in the intensive care unit
(ICU), or in the ICU on a ventilator. Importantly, the parameters driving this forecast are
interpretable in the sense that they directly correspond to underlying mechanisms, such as
transitions between stages of care and dwell-time distributions. Further, we show how our
model supports asking what-if queries, such as “what if the average stay on the ventilator
decreased by 2 days?”, and how it quantitatively answers such questions via downstream
forecasts of daily demand for hospital beds or ventilators. These forecasts could be used at
a regional or hospital level to assess if utilization will exceed crucial thresholds.

Desiderata. A key design goal for our model is that it must be portable to health systems
across the globe, so that it could accurately assess the value of an intervention in a given
region or country. Healthcare system heterogeneity means that in different regions of inter-
est, diverse data may be available due to logistical obstacles and legal concerns. To achieve
portability, we assume no patient-level data are available (not even individualized length of
stay information). Instead, our models rely only on aggregated daily count data.

A second goal is to explicitly capture uncertainty given limited data by learning a poste-
rior distribution over parameters rather than a point estimate. We take a Bayesian approach
by expressing our prior beliefs, updating those beliefs given some observed data, and then
making the best possible predictions and decisions given remaining uncertainty (Gelman
et al., 2013). Usually, fitting a posterior requires either optimization methods based on
variational inference (VI) (Wainwright and Jordan, 2008), or sampling methods based on
Markov chain Monte Carlo (MCMC) (Andrieu et al., 2003). However, for our model and
many like it, VI and MCMC have high derivation and implementation costs even for statis-
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tical learning experts, requiring months of researcher effort. These requirements make VI
and MCMC difficult to use for those who need our models the most (data scientists situated
inside healthcare organizations). Thus, to learn posterior distributions in ways that are
accessible and extensible, we turn to simulation methods based on Approximate Bayesian
Computation (ABC) (Marjoram et al., 2003; Marin et al., 2012; Cranmer et al., 2020). ABC
is easy to implement given a simulation that samples from the model. Furthermore, ABC
allows us to design a flexible distance function to assess fit, which we tailor to our application
in ways that would be difficult with an explicit likelihood in VI and MCMC.

Contributions. This study makes three key contributions.

• First, we develop a new model capable of forecasting the daily counts of patients at
various stages of care (general ward, intensive care unit (ICU), on ventilation in the
ICU, death) when given the daily admissions counts. The model parameters are fully
specified by fewer than 20 numbers, each one interpretable by practicing clinicians
because they correspond directly to how patients move through typical hospitals.

• Second, we develop routines for fitting posterior distributions over the model’s pa-
rameters given only aggregated daily count data from a region of interest. Build-
ing on Approximate Bayesian Computation (ABC) extensions of Metropolis-Hastings
MCMC (Marjoram et al., 2003), we show how well-chosen distance metrics prioritizing
later stages of care and recent counts, plus carefully designed annealing schedules for
thresholds, enable accurate fits and forecasts for data from a target region. We fur-
ther show how to scale this training to data representing tens of thousands of hospital
stays. Because our ABC approach is simpler to implement than other possibilities,
other researchers can adopt our work without advanced expertise in Bayesian learning.

• Third, we validate our model and posterior estimation procedures on several real-
world examples from both the United States and the United Kingdom. We show
that the model can provide competitive forecasts of daily counts for both a single
hospital and for an entire geographic region, even when the “training” period shows
rising numbers but the “testing” period exhibits falling counts due to underlying shifts
in policy and population behavior. Beyond accuracy, we show that our approach can
deliver insight into the parameters, can scale up to a simulation of patient pathways
for all admissions in the state of California, and can be interrogated with “what-if ”
scenarios to understand the likely quantitative impact of possible interventions.

Generalizable Insights about Machine Learning in the Context of Healthcare

Many healthcare modeling problems are beset by two challenges. First, it is difficult to
acquire large volumes of patient-level data (due to privacy concerns or logistical obstacles).
However, relevant aggregated data with no patient-specific information are often publicly
available. Second, it is usually easy to specify a mechanistic probabilistic model that can
simulate individual patient trajectories and produce aggregated counts, but difficult to learn
the posterior distribution over model parameters. Our work can be seen as a case study
of lessons learned in how to apply an under-utilized methodology – Approximate Bayesian
Computation (ABC) – to address both concerns in a healthcare context.

3



ABC for an Explicit-Duration HMM of COVID-19 Hospital Trajectories

2. Related Work

Projecting the spread of COVID-19 and its impact on hospital utilization has been widely
pursued. We briefly survey several threads of related work: regional modeling, local modeling
(at either the hospital-level or patient-level), combinations of regional and local models, and
efforts to assess societal value.

Regional modeling. Many studies have forecasted hospital utilization within a large
geographic region (Murray et al., 2020; Jewell et al., 2020; Reiner et al., 2021). Some
regional models use Susceptible-Infected-Recovered (SIR) models to predict regional case
rates (Zou et al., 2020; Li et al., 2020), which can then inform bed usage and ventilator
usage. Others (Murray et al., 2020) focus on predicting mortality rates given observed
deaths, then use an internal simulation to estimate hospital utilization given fatalities.

A common limitation of regional models is their simplified and inflexible characterizations
of the care pathways within hospitals. For example, CHIME2 (Weissman et al., 2020) allows
users to specify the proportions of patients requiring ICU care and mechanical ventilation,
as well as the average length of stay in the hospital and in the ICU. But the model does not
accommodate distributions for the “dwell times” at each level of care; nor does it allow for
different durations among patients who recover and who deteriorate. The Imperial College
model (Flaxman et al., 2020) connects deaths to key epidemiological parameters, but does
not capture hospital resources. The published forecasts of the popular “IHMEmodel” (Reiner
et al., 2021), maintained by the Institute for Health Metrics and Evaluation (IHME) at the
University of Washington, rely on rigid assumptions about how patients progress through
the hospital (IHME COVID-19 Forecasting Team, 2020, Suppl. Sec. 8). For example,
length-of-stay is not probabilistic but fixed for each class of patients (details in App. F).
Users of these forecasts cannot easily modify these internal parameters or learn them for a
location of interest; instead, the IHME itself must release updates. While the IHME model
has at times performed well at its target task of accurate forecasting of mortality (Friedman
et al., 2020), arguably it has been outperformed by other efforts (Gu, 2020).

Hospital-level modeling. At the hospital level, Lee et al. (2021) develop a non-mechanistic
prediction model for univariate counts of COVID-19 patients at a specific hospital site based
on auto-regressive statistical models. While this work is portable, we expect our mechanistic
model to generalize better (as confirmed in later experiments).

Epstein and Dexter (2020) developed a mechanistic model for making hospital-specific
short-term predictions of daily census counts. Given access to previous length-of-stay (LOS)
information at that hospital from previous patients, they can learn distributions and forecast
the length-of-stay of current patients at various stages of severity. The LOS data requirement
limits portability compared to our approach.

Patient-level modeling. At the patient level, Roimi et al. (2021) developed a model to
forecast an individual’s hospital trajectory using personal covariates such as age and sex
from thousands of patients. They built a multi-state survival model that accounts for how
the patient moves day-by-day between clinical states (critical, severe, or moderate) to make
local predictions for hospital resource demand in Israel. Importantly, their model accounts

2. https://penn-chime.phl.io
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for many important characteristics, such as right censoring and time-dependent covariates.
Our proposed model is simpler, and of course does not depend on any detailed patient-level
data. Unlike our approach, it would be difficult to transfer Roimi et al. (2021)’s model
across sites or regions because acquiring the necessary data is challenging.

Multi-level modeling. Recent efforts by Qian et al. (2020) present an integrated prob-
abilistic modeling approach for COVID-19 modeling at the national, regional, hospital and
individual levels, targeted at the United Kingdom. Their system, called COVID-19 Capacity
Planning and Analysis System (CPAS), makes detailed hospital stay forecasts for current
patients via models that utilize patient-level covariates (e.g. age, sex, comorbidities). They
can further simulate the durations of future patients by sampling from an agent-based simu-
lation, using a regional-level trend forecaster to predict admission volumes. While admirable,
this kind of modeling would only be possible in a nationalized health system with access to
patient-level data. For many regions of interest we simply cannot access such data.

Efforts to Assess Societal Value. A limited number of health technology assessments
of COVID-19 interventions include hospital utilization projections. We have identified three.
Congly et al. (2020) evaluated the administration of either remdesivir or dexamethasone to
various groups of patients hospitalized to treat their COVID 19 infections. Assumptions for
the model came from the literature. Gandjour (2021) assessed the addition of ICU capacity
in German hospitals, using assumptions derived from information released by the German
Ministry of Health. Finally, Jo et al. (2020) examined use of remdesivir and dexamethasone
in South Africa. The assessment relied on clinical trial results to project therapeutic impact
on length of stay and clinical outcomes. But the analysis did not explicitly describe its
modeling of patient progression in the hospital setting. We emphasize that none of these
analyses performed any kind of learning or calibration of their models to ensure consis-
tency with observed data from the regions or sites of interest. Thus, our study advances
the state-of-the-art for assessing societal value by applying modern Approximate Bayesian
Computation methods to ensure that models accurately explain data from the target site.

3. Model

We now describe our proposed probabilistic model for an individual COVID patient’s tra-
jectory through the hospital. We call our model the Aggregate Counts Explicit Duration
Hidden Markov Model, or “ACED-HMM” for short. While we specialize to modeling hos-
pitalized patients with confirmed cases of COVID-19 here, the model could conceptually be
used for any disease with appropriate changes to the stages of care considered as well as
modified assumptions about transitions and durations.

Our proposed model represents the patient’s current health state and stage of care in the
hospital over a period of T days, indexed by t ∈ {1, 2, . . . T}. There are 5 possible stages,
each indicated by a unique symbol. We assume each individual patient occupies exactly
one stage on each day. Fig. 1 diagrams the possible pathways and associated probabilities
through these stages. There are 3 intermediate stages: stage G indicates the patient is
the general ward, stage I indicates the patient is in the intensive care unit (but not yet on
mechanical ventilation), and stage V indicates the patient is actively receiving mechanical
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“G” : General Ward “I”: Intensive Care Unit “V”: On Ventilator in ICU

“R”: Recovered

“T”: Died

recovering

declining

recovering

declining

recovering

declining

“S” 
start

Figure 1: Diagram of the proposed Markovian model for a COVID-19 patient’s trajectory through
the hospital. Rectangles indicate possible states, defined by the patient’s current stage of care s
(general ward G, off ventilator in ICU I, on ventilator in ICU V) as well as health trajectory h
(recovering or declining). Small circles indicate stochastic binary choices, with one path marked by
transition probability. Recovery transition parameters ρk give the chance of switching to a recovery
path, while early death probabilities dk mark the chance of dying early. Based on clinical advice,
the early death probabilities dG and dI are modeled as very small under the prior. Each state has
an explicit duration distribution (not shown).

ventilation in intensive care. There are additionally 2 possible absorbing or terminal stages:
“terminal death” T or “fully recovered” R.

For each patient, indexed by n, our model generates a sequence of care segments indexed
by `, with total length Ln (not all patients will experience the same number of segments).
Each segment is defined by a “stage” category indicator sn` ∈ {G, I,V,R,T}, a “health”
binary indicator hn` ∈ {0, 1} corresponding to a “declining” or “recovering” trajectory within
that segment, and a “duration” integer ∆n` ∈ {1, 2, . . . D} representing the number of days
spent in that care segment. Our model generates patient n’s sequence of stage indicators
sn,1:Ln , health indicators hn,1:Ln , and durations ∆n,1:Ln via the random process defined
below. We drop the patient index n below when it is clear we are talking about one patient
to keep notation simple.

We stress that our model assumes that for each patient, we are given an integer an ∈
{1, 2, . . . , T} indicating the day the patient was admitted to the hospital. Throughout this
paper, we assume all patients begin in the general ward on their first day. However, in
principle it is easy to capture incoming patients that directly begin in the ICU stage I or on
the ventilator V, which might realistically happen for a transfer patient referred to a large
facility with more specialty care or available ICU beds.

3.1. The ACED-HMM Generative Model

Generating stage indicators. We always start in the general ward, and generate the
new stage indicator s` ∈ {G, I,V,R,T} for each subsequent segment ` ∈ 2, 3, . . . given the
previous health indicator h`−1 via:

s1 ← G, s` ←

{
T w. prob. ds`−1

if h`−1 = 0

next_stage(s`−1, h`−1) otherwise
(1)
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where parameters dG and dV define the chance of early death, and the deterministic
next_stage procedure always advances in order [G, I,V,T] if health is declining (h`−1 = 0),
and to advance in order [V, I,G,R] if health is recovering (h`−1 = 1). See Fig. 1 for visual
illustration of these stage pathways. Once we reach either absorbing stage (R or T), we
halt all further generation (this event defines the sequence length Ln).

Generating health indicators. We generate the health indicator for segment `, h` ∈
{0, 1}, given the previous health indicator h`−1 and the new stage s`. After each declining
segment (h = 0), we switch to recovery with a stage-specific recovery probability ρk ∈ [0, 1],
but otherwise keep declining. Once on a path to recovery (indicated by h = 1), we assume
the patient stays there and continues to recover:

h` ←

{
1 if h`−1 = 1

u if h`−1 = 0, u ∼ Bern(ρs`),
` ∈ {1, 2, . . .}. (2)

The parameters here are the recovery probabilities ρk for each intermediate stage k ∈ K
where K ∈ {G, I,V}.

Generating durations. We generate the duration (in days) ∆` for segment ` as:
∆`|s`, h` ∼ Cat(πs`,h`1 , . . . πs`,h`D ). (3)

where probability vector πk,h defines a categorical probability mass function over the first
D integers {1, 2, . . . D}. This vector defines the distribution over possible durations spent at
stage k ∈ K while in health state h ∈ {0, 1}. Notably, this model flexibly allows recovering
(h = 1) and declining (h = 0) patients to have different duration distributions at each stage.

Here, for tractability we must define the maximum number of days D allowed in each
segment. To balance reasonable computation times while matching some of the long stays
observed for this disease, we set D = 22. Designation of this value as our maximum dura-
tion at any segment of hospital care reflects statistics from the U.S. CDC as of September
2020 (CDC, 2020, Table 2). The CDC data indicates that for patients admitted to the ICU,
the 75th percentile estimated for total hospital length of stay (which corresponds to many
segments of our model) ranges from 20 days to 25 days across age groups. For patients not
admitted to the ICU, stays are typically much shorter. Thus, truncation of stage-specific
durations at 22 days affects few real-world patients and should still yield accurate forecasts.

Tractable parameterization of durations. As written above, we need to learn a sep-
arate D−dimensional probability vector πk,h for each state (indexed by stage k and health
h). We decide to explore a simpler formulation with only two scalar parameters per state:
mode location λk,h > 0 and temperature νk,h > 0:

[πk,h1 , . . . , πk,hD ]← softmax
(

logPoiPMF(1|λk,h)

νk,h
, . . . ,

logPoiPMF(D|λk,h)

νk,h

)
. (4)

where PoiPMF denotes the probability mass function of the Poisson distribution. See Fig-
ure 2 to see how the distribution π overD days depends on these two parameters. Intuitively,
λk,h controls the location of the mode. Large temperatures νk,h � 0 makes the distribution
πk,h more uniform, while as νk,h → 0 the distribution becomes peaked at the mode. This
flexible parameterization encodes two valuable inductive biases: similar stay-lengths have
similar probabilities, and the overall distribution is either unimodal or flat. This 2-parameter
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formulation has been previously used for supervised modeling of ordinal outcomes (Beckham
and Pal, 2017), but to our knowledge is new for durations in a semi-Markov model.

Joint Probability Distribution. Each patient’s entire observable experience can be cap-
tured by sequences of stage indicators, health indicators, and durations s1:Ln , h1:Ln ,∆1:Ln ,
with joint probability:

p(s1:Ln , h1:Ln ,∆1:Ln) = pτ (s1, h1)

Ln∏
`=2

pτ (s`, h`|s`−1, h`−1) ·
Ln∏
`=1

pξ(∆`|s`, h`) (5)

Here we’ve gathered all transition probabilities into τ , such that τ = {d, ρ} and all du-
ration parameters are denoted ξ = {λ, ν} for simplicity. Notably, this model structure
can be mapped to the semi-Markov model known as an explicit-duration (hidden) Markov
model (Ferguson, 1980; Mitchell and Jamieson, 1993; Yu, 2010), by mapping the health
and stage indicator variable sequences h1:Ln , s1:Ln to a discrete state sequence z1:Ln with 9
possible states: the start state S, the two absorbing states T,R, and 6 intermediate states
G0,G1, I0, I1,V0,V1 where the 0 (1) suffix in the state name represents the declining (re-
covering) variant of each stage, respectively. The transition probability parameters for this
HMM are specified in Supplementary Table C.1. Throughout the rest of the paper, we use
the compact notation zn = z1:Ln below to capture the state sequence for patient n, which
can be easily mapped back to the stage sequence and health sequence.

3.2. Prior beliefs about transition and duration parameters

Priors on transition parameters. We can use published statistics to inform our prior
beliefs about transition probability parameters τ = {ρ, d}. Published probability statistics
from the U.S. Centers for Disease Control (CDC) (see Table 2 of CDC (2020)) indicate
the fraction of hospitalized COVID-19 patients who are admitted to ICU, placed on the
ventilator, and eventually die, for each of three age groups (18-49, 50-64, and 65+). We
translate these into Beta priors for each ρk that try to match the mean of these statistics
while covering the overall possible range across age groups. See Appendix C.2 for details.

We next set the early death probabilities. Based on conversations with clinical experts,
we expect the chance of early death in the general ward is very low (E[dG] ≈ 1%) and the
chance of early death in the ICU is only slightly larger (E[dI] ≈ 2%). We again set Beta
priors to match these means and produce little uncertainty around them (such that the 95th
percentile is below 0.05) to reflect our confidence that early death is possible but rare.

Priors on duration parameters. To determine priors over the durations spent in each
state (indexed by s, h), we draw relevant parameters independently from a common prior:

λs,h ∼ N (µs,h, (σs,h)2, lower = 0, higher = D), log10 ν
s,h ∼ N (0.5, 0.52). (6)

Visuals of our prior’s imposed distribution on durations in each state can be seen in Fig. 5.
Our truncated normal prior for the mode location λs,h of each state reflects that these

quantities are difficult to know without reliable data about previous patient experience in
the region or site of interest. We select a mean of µs,h = 8 days with a high standard
deviation σs,h = 3, such that our Normal prior’s range of likely values (µs,h±3σs,h, covering
over 99% of probability mass) could plausibly set the duration mode from 1 to 17 days.
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Figure 2: Visualization of possible duration distributions under our proposed tractable 2-parameter
family. Parameter λ > 0 (x-axis) controls the location of the mode, while the temperature parameter
ν > 0 (y-axis) controls the entropy around this mode.

Our prior for each state’s temperature νs,h assumes the log of this value will be normally
distributed. By using a prior for log10 ν

s,h with mean 0.5 and standard deviation 0.5, we
allow plausible temperatures to span both high and low entropy distributions.

4. Learning

In order to train our model so its parameters reasonably explain hospital trajectories in a
specific region or site of interest, we assume we have access to some observed daily counts
y1:T = {yk1:T }k∈K during the training time period of interest. Here the set of observed stages
K could include any of the intermediate or terminal stages; typically K = {G, I,V,T}. We
also assume knowledge of the admission counts a1:T for the training period, which represent
a total of N patients who enter the hospital system, with N =

∑T
t=1 at.

Given observed counts y1:T , a1:T , we wish to be able to draw samples from the posterior
p(τ, ξ, z1:N ,∆1:N |y1:T , a1:T ). Samples from this distribution allow us to properly understand
the range of possible values for the model’s transition parameters τ and duration parameters
ξ = {λ, ν}. Samples of parameters can further allow us to produce forecasts, as we can draw
samples of counts yT+1:T+F for a “testing” period of F days – T + 1, . . . T + F – by taking
some assumed admissions aT+1:T+F for this period drawing samples forward.

For our model, it is easy to simulate patient care sequences and to produce aggregate
counts from these sequences (simply counting the total number of patients simulated in
each stage at each day). However, it is cumbersome to define an explicit probability mass
function for both the individual patient care sequences zn,∆n and the observed aggregate
counts y1:T . This would only become more difficult if we explore more complex versions
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of our model down the road (e.g. add age-dependent transition or duration probabilities).
We would like to be able to simply define a simulation that produces samples of aggregate
counts, and then be able to (approximately) fit its distribution to observed count data.

4.1. Approximate Bayesian Computation

To achieve this desired goal, we turn to Approximate Bayesian Computation (ABC) (Mar-
joram et al., 2003; Marin et al., 2012; Cranmer et al., 2020), a method for fitting models that
are naturally expressed as simulations. ABC has found applications in ecology (Beaumont,
2010), population genetics (Beaumont et al., 2002), and epidemiology (Blum and Tran,
2010). ABC is useful in cases like ours, where standard Markov chain Monte Carlo methods
would require an explicit ability to compute the likelihood of observed counts arising from
our individual simulations. ABC offers a simpler approach: we need only the ability to
simulate counts and the ability to decide if simulated counts are “close enough”.

Our approach is based on the ABC MCMC algorithm presented by Marjoram et al.
(2003). We iteratively propose new candidate values for parameters τ, ξ, and then decide
to accept or reject these based on an acceptance criterion designed to ensure the overall
sequence of sampled parameters converges to the target posterior distribution. This looks
superficially similar to conventional Metropolis-Hastings MCMC (Metropolis et al., 1953;
Andrieu et al., 2003). However, the test for acceptance uses an evaluation of a distance
function d between observed data y1:T and our simulation’s sampled counts ỹ1:T . This
distance threshold check replaces the evaluation of an explicit likelihood (which would require
specification of a probability mass function and the ability to evaluate it efficiently).

An advantage of our ABC approach is we do not need to compute or even define an
explicitly probability distribution for the likelihood p(y1:T |z1:N ,∆1:N ). This allows us to
avoid a potentially detrimental misspecified parametric form chosen for computational con-
venience. Furthermore, another advantage of ABC is that we can easily customize the
distance function to meet application-specific needs; specifying a full likelihood distribution
that acheives the same goals might be more challenging. For example, our chosen distance
below encodes an emphasis on fitting the most recent daily counts in the training period
(so our forecasts will generalize to the future well) and an emphasis on later stages of the
model (since those are harder to estimate well).

Distance computation. Given the set of K observed stages, let K denote the number of
stages K = |K|. Then ykt denotes the observed count at time t observed from stage k, and
ỹkt denotes the simulation’s sampled count. We define the distance as a normalized weighted
mean-absolute-error:

d(y1:T , ỹ1:T ) =
1

K · T

T∑
t=1

K∑
k=1

wtk
|ykt − ỹkt |

max(ykt , ỹ
k
t )

(7)

where wtk is a scalar weight that determines the relative “importance” of matching the
counts at time t and stage k. We define wtk as a product of a time-specific weight vt and
a stage-specific weight uk. For timestep weight vt, we apply a recency bias: we linearly
interpolate between v1 = 0.5 at day 1 and vT = 1.5 at day T , so that our model is better at
making forecasts after day T (and the average timestep weight is 1). We use stage-specific
weights uk because preliminary experiments suggested that counts for the later stages of
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the model are harder to fit (since all N patients enter the general ward, but only a smaller
fraction will reach the ICU and the ventilator). Thus, we set uk values so later stages are
worth more. Our recency emphasis via weights vt and later-stage emphasis via weights uk
are both important for good forecasting results in our application, and would be difficult to
encode in an explicit likelihood as in traditional MCMC. See Appendix D for details and
further discussion of our chosen distance.

Proposal distributions q. Our ABC algorithm requires a procedure to draw a new plau-
sible parameter value given a current value. For each type of parameter (transition probabil-
ities, duration modes, duration temperatures), we define a simple “random walk” proposal
distribution q with the mean at the ”old” value and a variance that encourages modest
exploration. See Appendix D for parameter-specific details.

ABC algorithm. Initial values of the transition parameters τ and duration parameters ξ
are samples from our chosen priors p(τ) and p(ξ) defined above. Then, until convergence, the
algorithm visits each individual parameter in turn (e.g. either a specific transition probability
parameter ρk or dk within τ , or a state-specific duration mode λs,h or temperature νs,h within
ξ). At each visit, a new candidate value is proposed from our chosen distribution q (defined
above). Then, we decide whether to “accept” or “reject” that value. For simplicity, we
denote the current set of parameters as τ, ξ, and the new candidate parameters (with one
entry updated) as τ∗, ξ∗.

There are two stages of acceptance. First, counts are simulated from our ACED-HMM
progression model for the entire training period using the proposed parameters τ∗, ξ∗, gener-
ating ỹ1:T . Then, we compute the distance d between the samples ỹ1:T and true counts y1:T .
If the distance d is below a chosen distance tolerance threshold ε, the algorithm moves on
to the second stage of acceptance, otherwise the proposed parameters are rejected. Second,
the proposed parameters are accepted if a random uniform draw between 0 and 1 is less
than the acceptance ratio α = p(τ∗,ξ∗)q(τ∗,ξ∗→τ,ξ)

p(τ,ξ)q(τ,ξ→τ∗,ξ∗) . The first stage of acceptance checks the
fit to the data (replacing the likelihood used in conventional MCMC), whereas the second
stage further filters the acceptance via information from the prior and from the proposal to
maintain the validity of the target distribution of the Markov chain (Marjoram et al., 2003).

Scheduling the distance tolerance threshold. Because random initial parameters are
unlikely to explain observed data well, we find it useful to start from a lenient value of the
data-agreement threshold ε. i.e. one that accepts all proposals. We then decay ε across
iterations to a value that better ensures a match to observed data. In the Supplement
Sec. D, we describe two phases for our ABC algorithm: a burn-in phase and a sampling
phase. In burn-in, we gradually decay the value of ε over many iterations to reach a good
explanation of the data. Then, in sampling we hold ε fixed and collect parameter samples,
which are treated as representative of the target posterior distribution. During burn-in, we
find it helpful to periodically increase ε sharply and then decay gradually to escape local
optima. See Fig. D.1 for a visual representation of escaping a local optima using this idea.

Ensembling. In order to obtain robust estimates of the posterior, we combine samples
from multiple independent runs of our ABC algorithm into an ensemble. For any given
dataset, we expect there might be several different parameter configurations that explain
the training counts well (due to the flexibility of the model and possible identifiability issues
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given limited counts). Ensembling allows us to capture more of these configurations than
a single run of ABC might recover. By aggregating, we gain statistical strength in the
forecasts as well as a deeper understanding of the uncertainty in learned parameter values.

Synthetic validation. We conducted several experiments on synthetic “toy” datasets
(generated by our model) to verify that our ABC procedures can (approximately) recover
plausible posterior distributions. See Appendix B.3 for a thorough description.

5. Data for Case Studies

We consider fitting our proposed model to pursue two possible applications over a range
of geographic scales. First, as a primary use case we consider performing regional fore-
casts, specifically for several states in the United States. State-level modeling allows us
to make forecasts that interest policy makers and public-health officials within that state.
We’ll also show how these forecasts might be used to assess societal value. Second, we
consider performing site-level forecasts for specific hospitals in the United Kingdom (UK).
These experiments allow us to assess potential utility to hospital administrators for planning
purposes.

Below, we describe the data acquired for training and evaluating our forecasting model
in both cases. Each dataset is assumed to provide census counts for the training period,
denoted as days 1, 2, . . . T , for some subset or additive combination of the stages of our
model (general ward G, off-ventilator in ICU I, on-ventilator in ICU V, terminal death T).
To evaluate forecasts against a “ground truth”, we further require the same counts for the
future period of interest, starting on day T + 1 and ending on T + F .

In order to assess our proposed hospital progression model, during both training and
forecasting we assume access to true daily admissions counts to the general ward. For a
real forecast after day T , these counts will not be known. In this case, we could use hand-
designed counts representing plausible future admission count scenarios provided by clinical
experts. Alternatively, we could use any forecasting model to produce future admission
counts (such as the model by Qian et al. (2020)). In this work, we assume admissions are
all directly into the general ward. This could be easily changed if desired (e.g. to simulate
the impact of transfers from an external hospital directly into the target hospital’s ICU).

5.1. U.S. state hospital data for regional forecasts

We obtain hospital utilization counts for four US states: Massachusetts (MA), Utah (UT),
South Dakota (SD), and California (CA). We use counts from November 11th, 2020 to Jan-
uary 11th, 2021 as training data, and forecast one month into the future. These chosen
states were selected to represent diverse geographic regions as well as diverse hospital uti-
lization dynamics and policy responses to the pandemic during the selected time period.
For example, hospitalizations in SD peaked in late November, in MA in early January, and
in UT in late January.

For all states, we use data from the COVID Tracking Project (The Atlantic Monthly
Group, 2021)3 and the U. S. Dept. of Health and Human Services (2021)4. See Appendix A

3. https://covidtracking.com/data

4. https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/g62h-syeh
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for details on how we collected the data. At the end of data collection, for each state we
have access to a daily time series of General Ward (G) counts, counts in the ICU off the
ventilator (I), counts on the ventilator (V) and terminal death counts (T). For Utah and
California in particular, we have access only to aggregate ICU counts (I + V) that do not
distinguish between on and off the ventilator. For all states, we found that smoothing the
terminal counts produced more sensible data (in the raw data, some weekends and holidays
report implausibly low counts for deaths that reflect imperfect reporting processes).

5.2. United Kingdom hospital data for site-level forecasts

We obtain daily occupancy counts at different care stages from two U.K. hospitals: South
Tees and Oxford University, made available to the public by the UK National Health Ser-
vice5. We use counts from November 3rd to January 3rd as training data, and forecast one
month into the future (counts past February 3rd were unavailable when we ran the exper-
iments). We selected these two hospitals because they represented large daily volumes and
appeared to have higher-quality data with fewer irregularities than other alternatives. After
data collection (see details in Appendix A), for each site we had access to counts of total
beds used (G + I + V), counts on the ventilator (V), and daily counts of recovered patients
discharged from the hospital (stage R of our model).

6. Results of Case Studies

Below, we describe a range of experimental results that assess our model’s qualitative and
quantitative performance as well as scalability, sensitivity to available data, and ability to
answer what-if questions.

6.1. Forecast assessment: Can this model capture qualitative trends?

We show our method’s forecasted distribution over daily counts for the entire US state of
Massachusetts in Fig. 3. Importantly, we see that our ACED-HMM mechanistic model
(blue lines), trained only on periods of rising case numbers, can reasonably forecast during
the downward trend in hospital counts seen in MA after mid-January 2021. In contrast,
a baseline non-mechanistic auto-regressive prediction model (red line, App. E), inspired by
Lee et al. (2021), does not generalize well in the testing period.

We further examine a forecast for a specific hospital site in the UK (“South Tees”)
in Fig. 4. Here, we see how our method can accurately capture rising trends during the
evaluation period for both overall occupied beds (the sum of several stages: G+I+V) as well
as for the number of ventilators in use (stage V), despite the fact that during the training
period the counts were mostly flat and had only recently begun to rise. These results indicate
that our model’s learned transition and duration distributions can successfully translate
several weeks into the future in some cases. Again, we do stress that we provided our model
the true admission counts for the testing period. However, accurate ventilator demand
prediction depended on and hence implies accurate transition and duration modeling.

5. https://www.england.nhs.uk/statistics/statistical-work-areas/covid-19-hospital-activity/
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Figure 3: Fit and forecasts on General Ward (G) and Total ICU (I + V) counts for Mas-
sachusetts. We use our ABC procedure to estimate an approximate posterior over our progression
model’s parameters, using 2 months of counts (left of the vertical dashed line). We stress that our
ABC method is also provided true daily admission counts for all days (0 - 92). We also include a
forecast from a baseline competitor model fit to the last 28 days of the training period (a statistical
autoregressive model with Poisson likelihood, See E), to highlight advantages of our mechanistic
model. Shaded intervals show the 2.5th and 97.5th percentiles of 2000 posterior samples.
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Figure 4: Fit and forecasts on Occupied Beds and Ventilator counts for South Tees
hospital in the UK. Parameters were selected via ABC to fit 2 months of counts (November
3rd to January 3rd, left of the vertical dashed line). Shaded intervals show the 2.5th and 97.5th
percentiles of 2000 posterior samples.
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6.2. Quantitative assessment: How accurate are forecasts?

We quantitatively evaluate the quality of our method’s forecasts for 3 US states and 2 UK
hospitals. For all U.S. states, we compare to forecasts from the IHME model (Reiner et al.,
2021). For one US state and one UK hospital, we also compare our method’s forecasts to
two baselines: a statistical autoregressive model with Poisson likelihood, and our prior over
ACED-HMM’s parameters. We consider two quantitative evaluation metrics, highlighting
the results of each below.

First, we compute Mean Absolute Error (MAE), to assess the error between each method’s
mean prediction and the observed daily counts in the testing period. See MAE results for
the US (Tab. B.1) and the UK (Tab. B.2) in Appendix B.1. For MA (a larger state with over
5.5 million adult residents), the key takeaway is that our ABC method achieves state-wide
MAE below 65 across all stages, while other methods are considerably larger in most cases
(for general ward, our MAE is 65 while others are all above 490; for ICU our MAE is 15.7
while others are above 100). While IHME achieves slightly better MAE on ventilator counts
from MA than our method, it overshoots the general ward counts considerably. For the two
smaller states (SD and UT, each with fewer than 3 million adult residents), our mean abso-
lute error (MAE) across all stages remained below 21, while other methods are considerably
worse (e.g. the IHME baseline exceeds 100 MAE for the ICU in UT and exceeds 71 MAE
for the general ward in SD). The results illustrate that our method can produce forecasts
with small deviation from the ground truth across several diverse scenarios.

Second, we assess the coverage of the learned posterior distribution across the 50%,
80% and 95% centered intervals of the posterior. For an ideal, well-calibrated posterior, we
should observe that X% of the actual counts in the testing period fall within an interval
chosen to cover X% of the distribution’s mass. See results for the US (Tab. B.3) and the
UK (Tab. B.4) in Appendix B.2. We find the coverage of our ACED-HMM is more plausible
than baselines, though there is still room to improve as we might expect from knowing our
model is an approximation of reality.

6.3. Interpretation of learned posteriors over parameters

In Fig. 5, we show the learned posterior distributions over all relevant model parameters
after fitting on the Massachusetts data. Several insights regarding hospital dynamics in
MA can be drawn. For instance, the learned probability of recovering in I is significantly
lower than that indicated by the prior, indicating a potential deviation in hospital dynamics
or in the patient age distribution in MA compared to the US as a whole. The learned
posterior indicates, with high confidence, that the average length of stay in I (ICU not on
the ventilator) is very low, both for recovering (h = 1) and especially for declining (h = 0)
patients, indicating that a patient who is on a declining path in the ICU is very quickly
moved to the ventilator. Last, patients on the ventilator seem to stay there for shorter
periods of time when declining rather than when recovering. However, we note that the
duration posterior for recovering on the ventilator closely matches the prior and is bimodal,
indicating we may not be confident that the posterior has recovered the ”ideal” parameter.
This result is not surprising, as very few of all admitted patients recover from the ventilator,
and thus given limited data it is the most difficult of all parameters to recover.
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Figure 5: Posterior distributions over parameters for Massachusetts (Nov. 11 - Jan. 11).
We show transition parameters (left) and duration parameters (right) after fitting on 2 months of
counts, where each day we used available census counts for G, I,V, and T. The colored interval of
duration plots shows the 2.5 - 97.5th percentile intervals of 2000 samples (10 runs, each with 200
samples). The prior is also shown for comparison.

In Fig. B.1 in the Appendix, we further visualize the learned posteriors for the South
Tees hospital site in the UK. As expected, we observe much higher variance in these learned
posteriors than the posteriors for the (much larger) Massachusetts dataset above. Naturally,
for a single hospital site we expect to be more uncertain (less confident). However, we notice
some potentially valuable differences compared to MA. Duration distributions appear to be
longer, and patients appear to be more likely to recover both in the General Ward and in
the ICU.

6.4. Data ablation study: How does learning from different sets of counts
affect the learned posterior?

Public data sources may differ in terms of the granularity of available counts. For example,
for U.S. states we can usually gather separate counts of for each of the G, I, and V inter-
mediate stages as well as the terminal stage T, while for the U.K. we only have counts of
all beds (G + I + V), patients on ventilation (V), and recovered (R). Other sites may yet
offer other different subsets of {G, I,V,T,R}.

To assess the model’s sensitivity to data granularity, we trained the ACED-HMM on
the Massachusetts data we used in our other experiments, but with a key manually imposed
difference in available data: instead of fitting to the finest granularity of available counts – G,
I, V and T separately – we instead aggregate all intermediate stages and fit the parameters
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Figure 6: Scalability assessment for MA data. We show the predictions for our ABC method
using all admissions recorded in the training period (left), as well as our proposed scaling procedure
with a 5x scale factor (right). The scaling simulates only 20% of observed admissions but then
scales all counts by 5. The scaling procedure allows simulations to run 5 times faster with the same
qualitative trend recovery and only modest increases in uncertainty intervals.

to daily counts of all beds (G+I+V) and death (T) only. See Fig. B.2 for fits and forecasts
to G, I, V and G + I + V counts, and Fig. B.3 for the learned model parameters.

We find that, while the model trained with less-granular data can fit the aggregate “all
beds” counts well in both training and test periods, the model could not recover individual
stage counts from the G and I stages well. In particular, the algorithm converged to pa-
rameters that undershot G counts and overshot I counts. The differing signs of these errors
roughly cancel out and thus aggregate counts are predicted well. Interestingly, the model
managed better predictions of V. We believe this is due to the presence of T counts at
training time, as these values provide a more direct signal for what the V counts should be.

This experiment shows that, as expected, forecasts on fine-grained counts that the model
was not trained on are generally not reliable, unless some closely-related counts is provided
(e.g. T is provided as a signal for V or R is provided as a signal for G). Stronger, more
informative priors about the intermediate stages may also improve performance when fine-
grained signals are not available.

6.5. Scalability assessment: How well does this model scale?

A key design requirement of our procedure is scaling up our simulations to handle data from
large regions or even entire countries. We propose a simple but effective scaling procedure
for ABC algorithm: given a scaling factor r > 1, we simulate only a fraction 1

r of all
admissions (at a fraction the computational cost). Then we multiplicatively rescale the
resulting aggregate counts produced by the simulation appropriately: rỹkt . In expectation,
this should be an unbiased estimator of simulated counts from the full admitted population.
In Fig. 6, we show that our proposed scaling procedure is effective. Simulating only 20% of
admissions in MA and rescaling, we see a qualitatively similar recovered forecast with only
modestly increased uncertainty. With exact simulation of Massachusetts already feasible,
by applying 10-x or 20-x scaling we can easily forecast for any U.S. state of interest.
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6.6. What-if scenario assessment: Can we assess the impact of interventions?

We now consider using our model to make data-driven decisions to assess the value of possible
interventions. One of the strengths of our mechanistic ACED-HMM model is that we can
consider possible changes or interventions to either the model parameters or assumptions
about admissions. Below, we imagine two possible scenarios for the state of California, which
chose to enact significant restrictions in late November and early December 2020 in light of
rising hospital numbers and especially rising ICU utilization. After fitting our progression
model to California count data, we forecast what would happen under two possible what-if
scenarios. All forecasts were made with 30-x scaling.

We stress that we fit model parameters over counts between November 11th and Jan-
uary 11th (reusing an existing ABC fit for convenience), so the forecasts shown are to be
interpreted as a retrospective analysis of what might have happened to the peak of the wave
had the interventions considered been successfully deployed and extensively used. However,
we emphasize that our method can also forecast into the future if desired.

What-if Scenario 1: Intervention that lowers hospitalization rates. Recent ad-
vances in pharmaceuticals have shown promising advances in monoclonal antibodies that
might reduce hospitalizations (and deaths). A recent Phase 3 trial suggests that two drugs
(bamlanivimab and etesevimab) together reduced hospitalizations and death by 87% when
given to severely ill COVID-19 patients before they needed the hospital (Eil Lilly and Com-
pany, 2021). Suppose that policy makers were able to aggressively roll this treatment out
over 30 days across the state of California, before the large wave of rising cases in late 2020.
In Fig. 7, we show our model’s fit to several scenarios: what actually happened (no reduc-
tion in admissions), an ideal retrospective rollout (a linear ramp up to a full 87% reduction
in hospital admissions after 30 days), and two more realistic targets of a 50% and a 25%
reduction. Given Fig. 7 plus knowledge of capacity limits, policy makers could use such
quantitative forecasts to decide which rollout strategies to prioritize.

What-if Scenario 2: Pharmaceutical that lowers recovery times in the hospital.
We next consider an intervention that changes the number of days spent when recovering
in the hospital, motivated by a promising new treatment possibility. A recent clinical trial
described by Beigel et al. (2020) suggests that the drug remdesivir reduced time to recovery
from a median of 15 days (placebo) to a median of 10 days (treatment) for hospitalized
patients with advanced cases of COVID-19. The study also reported a similar improvement
among patients with severe disease, with recovery time reduced from a median of 18 days to
a median of 11 days. We thus consider a scenario that assumes a 25% reduction in recovery
time, as this would be a conservative assessment of such a therapy.

To operationalize this intervention in our model, for each segment ` of patient n’s trajec-
tory, we impose a 25% reduction in the sampled duration ∆n` when the patient is recovering
(when health indicator hn` = 1). Durations in the model’s declining health states are not
modified. When we reduce durations, we round up or down to an integer number of days in
a probabilistic way that preserves the expected value (e.g. if the scaled duration is 9.75, we
return 10.00 75% of the time and 9.00 25% of the time). We further adjust to account for
the fact that stays of length one cannot be reduced further.

Fig. 8 shows the difference between the standard and 25% reduction in recovering du-
rations. As expected, we see noticable differences in the populations in the general ward.
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Figure 7: Forecasted demand for General Ward (top) and ICU (bottom) beds in Cali-
fornia under Scenario 1 (Sec. 6.6).
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Figure 8: Forecasted demand for General Ward beds (left) and ICU beds (right) using
actual future counts (top) and a worst-case projection of counts (bottom) in California
under What-if Scenario 2 (Sec. 6.6).

However, the model suggests the ICU counts would not change much (probably because the
ICU is unfortunately dominated by declining rather than recovering patients).

7. Discussion

We have contributed a new probabilistic model, developed a scalable ABC algorithm to
draw samples from the (approximate) posterior distribution over model parameters, and
validated these contributions on several datasets relevant to hospital demand modeling.

Limitations. Our proposed ACED-HMM model has several limitations. A major one is
that it assumes the availability of admission counts when making forecasts, when of course
for a real forecast into the future these counts are not known. We hope in future work
to explore integrating models for forecasting future admissions, such as the model used
by Qian et al. (2020). Another major limitation is that we currently assume that the values

19



ABC for an Explicit-Duration HMM of COVID-19 Hospital Trajectories

of most parameters are static over time. In reality, we know that many factors are all
changing over time, including properties of the disease (e.g. variants with different infection
dynamics), characteristics of the infected population (e.g. age distributions), and hospital
care practices. In the language of statistics, we know the real progression of patients through
the hospital is neither homogenous nor Markov, so we should not expect our forecasts to be
accurate far into the future. We could allow the model to learn how recovery probabilities or
duration distributions might change over time. Finally, our model would likely be improved
by capturing age as a key prognostic covariate that informs both the recovery probabilities
and the duration probabilities. Naturally this would require more information, such as
estimates of the age distribution on each day in the target region. However, if available this
information could increase the model’s power as an explanatory tool.

Further limitations can be ascribed to our proposed ABC methodology. Though our
ABC procedure is simple and scalable, it is inefficient in the way it proposes samples via a
random walk, with rather high rejection rates. In the future, we may consider Hamiltonian
ABC (Meeds et al., 2015) methods to use gradient information to improve proposals and
accelerate posterior exploration.

Advantages. Towards our twin goals of being able to provide reasonable forecasts and
assess societal value, the extreme portability of our approach is a key advantage. The model
requires only daily count data that are available from public health agencies throughout
the world. There is no requirement for patient-level data. We further emphasize that the
model and learning procedures are easily extended. Changing the model (such as adding
age-dependent duration probabilities) would simply require editing the simulation code that
generates a patient’s sequential trajectory of states zn,1:Ln and durations ∆n,1:Ln , and spec-
ifying relevant prior and proposal distributions for any additional parameters.

Overall, we hope this study and our open-source code release leads to an improved abil-
ity to make hospital demand forecasts that are portable (by requiring only aggregate count
data), interpretable and extrapolate-able (by using a mechanistic model), accurate (by fitting
model parameters to local conditions via our ABC algorithm), and appropriately uncertain
(by producing posterior distributions rather than point estimates). Although further work
is needed to properly assess the societal value of possible interventions with this model, we
believe our work represents a promising first step.
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Appendix A. Datasets

In our public code release, we include CSV files of the datasets we used for both the US and
UK. Below, we describe how we obtained and preprocessed this data from original sources.

A.1. U.S. data.

Data representing state-level counts came from the U. S. Dept. of Health and Human
Services (2021) and the Covid Tracking Project (CTP, The Atlantic Monthly Group (2021))6.
We accessed the data in February 2021. These sources provide data for all 50 states, we
selected a subset of states of interest: California (CA), Massachusetts (MA), South Dakota
(SD), and Utah (UT). HHS data provided daily counts of hospital admissions and general
ward occupancy counts (stage G), while CTP data provided ICU counts (I and V), as well
as deaths (stage T).

As much as possible, we validated the consistency of these 2 public data sources by
assuring that these counts matched with available corresponding data provided directly by
state government public health agencies. For example, we verified the MA data matched
counts released by the Massachusetts Department of Public Health7.

In summary, our US predictive models all use standardized counts representing adult
hospitalizations for confirmed COVID-19 cases. We are certain that our data for the general
ward (G) accounts for the adult population while excluding pediatric cases. Through data-
consistency checks across the 2 data sources, we convinced ourselves that CTP’s I,V, and
T data can be assumed as a good representation of adult populations (even though CTP
reports uncertainty about whether their numbers include pediatric cases).

HHS fields used. HHS data descriptions are found on the clickable columns of the data
web page8. We used the following data fields, with quoted definitions extracted from the
data source.

• previous day admission adult covid confirmed : “Number of patients who were
admitted to an adult inpatient bed on the previous calendar day who had confirmed
COVID-19 at the time of admission in this state” (We considered previous day admis-
sions as a feasible current day admission because admissions rates were not abruptly
changing in orders of magnitudes between days. We recommend considering making
the 1 day adjustment in future use of this data field.)

• total adult patients hospitalized confirmed covid : “Reported patients currently
hospitalized in an adult inpatient bed who have laboratory-confirmed COVID-19. This
include those in observation beds”

• staffed icu adult patients confirmed covid : “Reported patients currently hospi-
talized in an adult ICU bed who have confirmed COVID-19 in this state”

6. https://api.covidtracking.com/v1/states/daily.csv
7. https://www.mass.gov/info-details/archive-of-covid-19-cases-in-massachusetts
8. https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/

g62h-syeh/data
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CTP fields used. CTP data descriptions are found in the ’historic values for all states’
section of the data API webpage page9. We used the following data fields, with quoted
definitions extracted from the data source.

• inIcuCurrently : “Individuals who are currently hospitalized in the Intensive Care
Unit with COVID-19. Definitions vary by state / territory, and it is not always clear
whether pediatric patients are included in this metric. Where possible, we report
patients in the ICU with confirmed or suspected COVID-19 cases”

• onVentilatorCurrently : “Individuals who are currently hospitalized under advanced
ventilation with COVID-19. Definitions vary by state / territory, and it is not always
clear whether pediatric patients are included in this metric. Where possible, we report
patients on ventilation with confirmed or suspected COVID-19 cases.”

• deathIncrease : ”Daily increase in death, calculated from the previous day’s value.”

We note that as of 2021-04-14, the CTP website relates the following message: ”The
COVID Tracking Project has ended all data collection as of March 7, 2021. These files are
still available, but will only include data up to March 7, 2021. We’ll be publishing research
through May, and then we will—fully and accessibly—archive our work and be done.”

Obtaining stage-specific counts from raw data fields.

• Counts for daily admissions to the general ward were obtained from field previous
day admission adult covid confirmed.

• G : Daily counts for general ward occupancy were obtained from field total adult pa-
tients hospitalized confirmed covid subtracting field staffed icu adult patients
confirmed covid

• I : Daily counts for ICU-off-ventilator were obtained from field inIcuCurrently sub-
tracting field onVentilatorCurrently

• V : Daily counts for ICU-on-ventilator were obtained from field onVentilatorCur-
rently

• T : Daily counts obtained from field deathIncrease

Variable data granularity across states. Not all states report counts from all stages.
For example, UT and CA only provide aggregate ICU counts, and thus do not distinguish
between on and off the ventilator. We thus take the provided count as the sum of the two
ICU stages I,V of our model, and adapt our ABC accordingly to evaluate a distance on
this combined stage.

Smoothing terminal counts. For all states, we find the daily counts for the terminal
death stage T to be both noisy and unreliable due to human factors in the reporting process.
In particular, the reported counts often drop to unrealistic values at or close to zero during
holidays and weekends (e.g. in some states we observed zero deaths on Thanksgiving and
Christmas). Thus, we smooth these counts by replacing each day’s raw value with the
centered moving average across 5 days, being careful to not leak test-counts information
into the moving average of training counts.

9. https://covidtracking.com/data/api
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A.2. UK data.

We selected two hospital sites in England, United Kingdom with consistent data availability
and a large volume of cases. We used public data sourced from the UK National Health
Service (NHS)10, which provided the count of beds occupied by COVID-19 patients on each
day at each hospital. We used the following data fields:

• mechanical ventilators used for covid patients (V)

• total number of beds used for covid patients (G + I + V)

• patients discharged from covid hospitalization (R)

• patients admitted with covid

• patients diagnosed in-hospital with covid but who were not admitted as covid patients

In our experiments, we aggregated daily covid admissions and daily in-hospital covid di-
agnoses to form the daily admissions in G that are then fed into ACED-HMM. The two
hospital sites we selected had the same available counts. Unlike for US data, we did not find
the need to smooth any count.

Appendix B. Additional Results

B.1. Quantitative assessment: How accurate are the forecasted counts?

We next assess how accurate the forecasted counts are, in terms of mean absolute error from
the observed counts in the test set. In Table B.1, we show mean absolute errors for our
proposed ACED-HMM + ABC (averaged over all days in the forecasting period) for 3 US
states. We further perform the same assessment on 2 single hospital sites from the UK in
Table B.2.

On select datasets, we compare to several reasonable baselines. (We did not try all
methods on all datasets due to limited computational resources and the expected poor
performance of most baselines). First, we consider “ACED-HMM + Prior”, which makes
forecasts using the prior distribution over our model’s parameters, rather than the posterior
fit via ABC. This could indicate how reliable our model would be if we did not adapt
parameters to the specific region of interest but instead chose values for transition and
duration probabilities from a reasonable literature survey (as our prior is chosen). This
could also indicate how important other factors (such as the provided admission counts in
testing period) are to the forecast. Second, we compare to “AR-Poisson”, a non-mechanistic
probabilistic autoregressive model with a Poisson likelihood that forecasts each univariate
count time-series individually, inspired by Lee et al. (2021). This is a custom univariate
forecasting model fit to each stage separately. It does not use admission counts at all. See
Appendix E for details.

For all U.S. states we compare against the January 15th public release of IHME model
forecasts (Reiner et al., 2021). These forecasts were produced by the IHME team by training
on data available before January 12th, thus matching the start of our testing period almost
exactly. This model does not make use of admission counts from the testing period. See
Appendix F for details.

10. https://www.england.nhs.uk/statistics/statistical-work-areas/covid-19-hospital-activity/
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G InGeneralWard I + V InICU V OnVentInICU T sm. Death
Method MAE lower - upper MAE lower - upper MAE lower - upper MAE lower - upper

MA

ACED-HMM + ABC 65.0 61.5 - 68.9 15.7 14.5 - 16.9 34.0 32.6 - 35.7 8.0 7.8 - 8.3
ACED-HMM + Prior 868.6 779.6 - 945.8 293.6 272.6 - 313.3 119.6 113.8 - 124.8 40.7 39.1 - 42.2

AR-Poisson 498.0 438.3 - 553.6 162.2 148.6 - 173.5 128.3 118.5 - 138.6 34.8 28.4 - 42.0
IHME 1066.1 *543.4 - 1754.9 104.0 *15.6 - 257.9 25.7 *41.4 - 106.5 21.6 *8.7 - 49.7

Mean Test y 1141.6 392.5 249.1 66.5

SD
ACED-HMM + ABC 9.2 8.5 - 10.1 4.5 4.3 - 4.8 4.8 4.5 - 5.1 2.8 2.7 - 2.9

IHME 71.8 *6.6 - 166.4 17.7 *4.2 - 46.0 5.9 *6.3 - 20.6 2.5 *3.6 - 5.0
Mean Test y 102.5 34.9 23.6 7.8

UT
ACED-HMM + ABC 20.8 20.2 - 21.3 18.2 17.4 - 19.2 NA 2.4 2.3 - 2.5

IHME 332.9 *142.6 - 578.4 105.0 *35.7 - 213.9 NA 7.4 *2.7 - 15.7
Mean Test y 272.9 164.3 NA 11.7

Table B.1: Quantitative error assessment on 3 U.S. states. We measure error on the testing period
(Jan. 11 - Feb. 11, 2021) with respect to the observed counts at each possible care stage: general
ward G, in ICU (including on and off ventilator) I+V, on ventilator in ICU V, and smoothed death
counts T sm.). For all states and stages, we report the mean count y across the testing period to
give a sense of scale. Cells marked NA were not available for that state (see discussion in App. A).
AR-Poisson baseline is described in App. E, IHME baseline in App. F. We communicate uncertainty
by reporting lower and upper estimates of the MAE. To obtain these intervals for all variants of
our ACED-HMM as well as our AR-Poisson baseline, we repeat all MAE computations across 100
separate batches of posterior samples. We compute and report the 2.5th and 97.5th percentiles
across these batches. For the IHME baseline, a distribution of forecasted samples is not available.
Thus, we report the MAE computed using the mean estimate forecast, as well as the MAE computed
using the provided lower and upper estimates count values. This second kind of interval (marked
with *) should not be directly compared to the first, as they capture different aspects of uncertainty.

For both versions of ACED-HMM and for the autoregressive model, we compute the
MAE and its confidence interval as follows. We draw 100 samples from the posterior (prior
for ACED-HMM + Prior) distribution over the model parameters, we produce individual
forecasts for each sample, and compute the MAE using the mean of these forecasts. We
repeat the process 100 times, and we report the average MAE with the 2.5th - 97.5th
percentile range across these batches as confidence interval. The public release of forecasts
from IHME only provides three daily forecast values - a mean estimate, a lower bound and
an upper bound - thus making it impossible to compute a confidence interval analogous
to that which we compute for the other three models. Thus, we simply report the MAE
computed using each of the three estimates. The IHME uncertainty intervals (marked with
*) are given for completeness, but should be recognized as different from the other intervals
and not directly compared.

B.2. Quantitative Assessment: Posterior Coverage

Below, we consider the coverage of the estimated posteriors produced by our procedure.
In Tab. B.3 and B.4, we show the 50%, 80% and 95% coverage fractions. Ideal probabilis-

tic models that are well-calibrated would have an empirical fraction of observations exactly
equal to the target fraction. However, fractions of observations greater than the target frac-
tion are more desirable than those lower, as that indicates a better fit to the observations
by the median of the forecasts. We see that all models could be better calibrated. However,
our ACED-HMM trained with ABC has a great fit to the G + I + V counts and V counts
on both UK hospitals, as well as a near-perfect fit to the I + V counts on US states, counts
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G + I + V All Beds V OnVentInICU R Recovered
Method MAE lower - upper MAE lower - upper MAE lower - upper

South Tees

ACED-HMM + ABC 8.7 7.7 - 10.2 4.6 3.9 - 5.1 5.7 5.5 - 5.8
ACED-HMM + Prior 118.4 109.8 - 125.9 10.7 10.0 - 11.4 5.9 5.7 - 6.2

AR-Poisson 49.2 40.3 - 60.5 417.3 15.8 - 2209.5 49.2 9.7 - 518.7
Mean Test y 199.5 31.1 20.8

Oxford
ACED-HMM + ABC 18.0 15.4 - 22.4 6.3 5.5 - 6.9 13.4 13.2 - 13.6

Mean Test y 274.7 37.7 33.1

Table B.2: Quantitative error assessment for predictions for two UK hospital sites during the testing
period (Jan. 11 - Feb. 11, 2021). We assess mean absolute error (MAE) at each stage where we
have available “ground-truth” count data for these sites: total hospital bed count G + I + V, count
of patients on ventilator in ICU V, and counts of patients who recovered R. For all sites and stages,
we report the mean count y across the testing period to give a sense of scale. AR-Poisson baseline
is described in App. E. We communicate uncertainty by reporting lower and upper estimates on the
MAE, which we obtain by repeating all MAE computations across 100 separate batches of posterior
samples. We compute and report the 2.5th and 97.5th percentiles across these batches.

that have been the metric most commonly used by US states’ legislatures to determine the
imposition of social-distancing measures. We wish to emphasize that coverages need to be
put in the context of their MAEs as well. For instance, while ACED-HMM has worse 95%
coverage than AR-Poisson on G counts, that is because AR-Poisson has much worse MAE
with a very high uncertainty interval, effectively making AR-Poissons’s predictions less use-
ful than those of ACED-HMM. That being said, ACED-HMM appears to be too confident
in its predictions. However, we note that the scalability approximation that we propose
provides more conservative uncertainty estimates.

B.3. Synthetic Data Assessment: Can we recover “ideal” model parameters?

We assessed the ability of our procedure to recover ”ideal” model parameters under different
admissions regimes. We selected a set of parameters that deviated significantly, though not
excessively from the prior we derived from CDC data. Then, we simulated sets of counts
using these parameters and a fixed random seed under 4 admissions regimes, respectively
with 1-x, 3-x, 6-x and 9-x the amounts of true admissions at South Tees Hospitals between
November 3rd and February 3rd. We note that the 9-x admissions regime is comparable
to that of Massachusetts in terms of total admitted patients, and it thus can be considered
a regional-level regime. We then used ABC with the same prior to learn 5 sets of model
parameters to fit each of the 5 simulated counts, respectively. We used all possible counts
for training: R, G, I, V and T.
ABC was able to identify parameters that provided a close-to-optimal fit to the training
counts as well as high-quality forecasts on test counts. While the parameters learned were
optimal in their ability to explain the training data, in no case were they ”ideal”, i.e. the
true parameters. In particular, we observed that, the higher the number of total admitted
patients, the closer the learned parameters are to the true ones, as can be seen by comparing
Fig. B.4 and Fig. B.5, which show the posterior distributions for the 1-x (hospital-level) and
9-x (regional-level) regimes, respectively. Under the regional-level regime, 5 parameters are
fully recovered (i.e. mean of posterior matches true parameters), 2 parameters are partially
recovered (i.e. posterior shifts from prior towards true parameter), 3 parameters are not

29



ABC for an Explicit-Duration HMM of COVID-19 Hospital Trajectories

Coverage (%) G I V I+V T T sm.

South Dakota
ACED-HMM + ABC 95 87 77 81 100 45 77

80 52 48 71 97 23 68
50 42 26 32 55 6 32

Utah
ACED-HMM + ABC 95 71 NA NA 100 55 100

80 39 NA NA 100 32 87
50 19 NA NA 61 23 39

Massachusetts

AR-Poisson 95 81 100 45 61 100 100
80 45 90 26 35 68 87
50 29 35 13 13 32 10

ACED-HMM + Prior 95 52 39 61 71 42 23
80 6 35 42 39 26 23
50 6 19 19 23 23 19

ACED-HMM + ABC 95 68 65 42 97 55 84
80 48 45 16 94 39 74
50 32 16 3 74 16 58

Table B.3: Coverage assessment for forecasts based on methods fit on U.S. state-level data. This
metric assesses how reliably calibrated the forecasted distributions each method produces may be
on future unseen data. Given many samples from a predicted distribution, we obtain a centered
interval of specified coverage fraction by computing the relevant percentiles of the samples (e.g. for
the 80% coverage fraction our interval is defined by the 10th to 90th percentiles). We report the
observed fraction of daily count data within the testing period at each stage that fall within that
predicted interval. Ideally, the observed fraction should be close to the intended coverage fraction.

recovered (i.e. no shift from prior towards true parameters).
Under our modeling assumptions, higher admissions regimes generate counts which are re-
producible by fewer sets of parameters. In other words, the space of ”optimal” parameters
shrinks. Thus, on higher admissions regimes, our procedure converges closer to the true
parameters.
Furthermore, we observed that certain parameters are easier to recover than others. For
instance, parameters that have a direct effect on R and T counts seem to be among the
first to be recovered, this includes the duration probabilities recovering in G and declining
in V. By contrast, the parameters at the interface between hospital stages seem harder to
recover.
We believe another useful experiment using synthetic data to be one that answers the ques-
tion How informative does the prior need to be for the posterior to recover all the ”ideal”
parameters?. We leave the answering of this question for future work.

Appendix C. Details of Progression Model

C.1. View of our model as Hidden Markov Model

In the main paper, we discuss how our proposed model can be seen as an explicit dura-
tion hidden Markov model with 9 states: S,G0,G1, I0, I1,V0,V1,T,R. We provide the
transition matrix for this model in Table C.1.
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Coverage (%) R G+I+V V

South Tees

AR-Poisson 95 90 100 100
80 52 100 100
50 3 58 74

ACED-HMM + Prior 95 77 100 84
80 58 13 42
50 29 10 26

ACED-HMM + ABC 95 77 100 97
80 48 100 87
50 26 97 39

Oxford
ACED-HMM + ABC 95 55 100 100

80 19 100 77
50 10 87 35

Table B.4: Coverage assessment for forecasts based on fits to two U.K. individual hospital sites.
This metric assesses how reliably calibrated the forecasted distributions each method produces may
be on future unseen data. Given many samples from a predicted distribution, we obtain a centered
interval of specified coverage fraction by computing the relevant percentiles of the samples (e.g. for
the 80% coverage fraction our interval is defined by the 10th to 90th percentiles). We report the
observed fraction of daily count data within the testing period at each stage that fall within that
predicted interval. Ideally, the observed fraction should be close to the intended coverage fraction.

next state
R G1 I1 V1 G0 I0 V0 T

pr
ev

.
st

at
e

S ρG 1− ρG
G1 1
I1 rI 1− rI
V1 rV 1− rV
G0 ρI(1− dG) (1− ρI)(1− dG) dG
I0 ρV (1− dG) (1− ρV )(1− dI) dI
V0 1

Table C.1: State transition probabilities assumed by the explicit-duration HMM equivalent of our
model: rows correspond to the previous state and columns indicate possible next states. Blank
entries all have zero probability, but are kept blank for visual clarity. It is not possible to transition
into the start state S or out of the terminal states R and T, so these rows/columns are omitted.

C.2. Recovery probabilities

We reproduce the relevant numbers from the CDC’s Table 2 in Table C.2, and then describe
how these estimates are turned into a prior over ρ. We first convert these estimates to
single, age-independent estimates by computing the average across age groups weighted by
the US country-level age distribution of hospital patient provided by the CDC 11 during
the week of November 7th. We show the computed average on the right-most column of
Table C.2. Then, assuming fixed values for the probabilities of dying d and given these
numbers, we derive the probability of recovering at each stage. Let p(I) be the percent of
patients transferred to the ICU, p(V) the percentage of patients who receive ventilation,
and p(T) the percent of patients who die, we compute the mean the priors for ρG, ρI and

11. https://gis.cdc.gov/grasp/covidnet/COVID19_3.html
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Figure B.1: Posterior distributions over parameters for South Tees hospital in the UK
(Nov. 3rd - Jan. 3rd). We show transition parameters (left) and duration parameters (right)
after fitting on 2 months of counts, where each day we used available census counts for R,G+I+V,
and V. The colored interval of duration plots shows the 2.5 - 97.5th percentile intervals of 2000
samples (10 runs, each with 200 samples). The prior is also shown for comparison.
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Figure B.2: Fit and forecasts on MA data for ACED-HMM trained to match counts that
combine multiple stages of care. Here, the ACED-HMM was trained to match the total number
of hospital beds (G + I + V) as well as terminal counts (T) for MA state-level data. (Compare
to Fig. 3, which fit on counts for individual stages G, I, V, and T). The model is able to fit
and forecast the total bed counts accurately (upper-left), but did not recover the counts at some
individual compartments (G : lower left, I upper right) well. The ventilator counts (V : lower right)
are near-optimally recovered as they have a very direct influence over the observed T counts.

ρV by solving for them in the following equations:
1− p(I) = ρG + ((1− ρG)dG)

p(V) = p(I)(1− ρI)(1− dI)

32



ABC for an Explicit-Duration HMM of COVID-19 Hospital Trajectories

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

proba_Recovering_given_InGeneralWard

prior
posterior
across 10 runs

0.00 0.02 0.04 0.06 0.08 0.10
0

10

20

30

40

50

60

70

proba_Die_after_Declining_InGeneralWard

prior
posterior
across 10 runs

2 4 6 8 10 12 14 16 18 20 22
0.0

0.1

0.2

0.3

0.4

0.5
pmf_duration_Recovering_InGeneralWard

prior
posterior
across 10 runs

2 4 6 8 10 12 14 16 18 20 22
0.0

0.1

0.2

0.3

0.4

0.5
pmf_duration_Declining_InGeneralWard

prior
posterior
across 10 runs

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

7

8
proba_Recovering_given_OffVentInICU

prior
posterior
across 10 runs

0.00 0.02 0.04 0.06 0.08 0.10
0

10

20

30

40

proba_Die_after_Declining_OffVentInICU

prior
posterior
across 10 runs

2 4 6 8 10 12 14 16 18 20 22
0.0

0.1

0.2

0.3

0.4

0.5
pmf_duration_Recovering_OffVentInICU

prior
posterior
across 10 runs

2 4 6 8 10 12 14 16 18 20 22
0.0

0.1

0.2

0.3

0.4

0.5
pmf_duration_Declining_OffVentInICU

prior
posterior
across 10 runs

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

proba_Recovering_given_OnVentInICU

prior
posterior
across 10 runs

2 4 6 8 10 12 14 16 18 20 22
0.0

0.1

0.2

0.3

0.4

0.5
pmf_duration_Recovering_OnVentInICU

prior
posterior
across 10 runs

2 4 6 8 10 12 14 16 18 20 22
0.0

0.1

0.2

0.3

0.4

0.5
pmf_duration_Declining_OnVentInICU

prior
posterior
across 10 runs

Figure B.3: Posterior distributions over parameters for Massachusetts (Nov. 11th - Jan.
11th) using aggregate bed counts for training. We show transition parameters (left) and
duration parameters (right) after fitting on 2 months of counts, where each day we used census
counts for G+ I+V, and T. The colored interval of duration plots shows the 2.5 - 97.5th percentile
intervals of 2000 samples (10 runs, each with 200 samples). The prior is also shown for comparison.

Age 18-49 50 - 64 65+ Avg.
Percent transfered to ICU 23.8 36.1 35.3 34.3

Percent who receive ventilation 12.0 22.1 21.1 20.4
Percent who die 2.4 10.0 26.6 19.3

Table C.2: Reproduced from Table 2 of CDC (2020), when accessed on March 19, 2021. We added
the right-most column.

p(T) = p(V)(1− ρV) + p(I)(1− ρI)dI + dG

The found values for ρG, ρI and ρV denote the ratios of parameters for the beta priors.
To set the variance for the priors, we set the beta parameters for the prior over each ρ by
multiplying ρ and 1− ρ by a scalar value r. For ρG, we empirically set rG = 100. Then, we
set rI = rG(1−ρG) and rV = rI(1−ρI). This increases the uncertainty in prior in proportion
to the influx of patients in the different stages expected under the regime specified by the
prior mean probabilities.
For both probabilities of death, we set r = 200 to indicate strong confidence in the low value
that we set and discourage exploration towards unrealistic values.
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Figure B.4: Posterior distributions over parameters for synthetic data with hospital-level
admissions. We show transition parameters (left) and duration parameters (right) after fitting on
61 days of counts, where each day we used available simulated census counts for R,G, I,V, and T.
The colored interval of duration plots shows the 2.5 - 97.5th percentile intervals of 2000 samples (10
runs, each with 200 samples). The prior is also shown for comparison.
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Figure B.5: Posterior distributions over parameters for synthetic data with regional-level
admissions. We show transition parameters (left) and duration parameters (right) after fitting on
61 days of counts, where each day we used available simulated census counts for R,G, I,V, and T.
The colored interval of duration plots shows the 2.5 - 97.5th percentile intervals of 2000 samples (10
runs, each with 200 samples). The prior is also shown for comparison.
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Appendix D. Details of ABC Learning Procedure

Biasing the distance computation. For every dataset, we set weight uk for each count
type k such that counts that are generated at stages farther away from admissions are worth
more, and such that their average is 1.0, so that the upper bound on the distance is preserved
at 1.0. The rationale behind this is that counts generated farther away from admissions are
generally harder to recover, as indicated by the greater uncertainty of ABC in predicting
those counts that we see in our experiments.
For MA and SD, where G, I,V and T-smoothed counts are available, we set uG = 0.7,
uI = 0.9, uV = 1.1 and uT = 1.3. For UT and CA, where G, I + V and T-smoothed counts
are available, we set uG = 0.8, uI+V = 1.0 and uT = 1.2. For the data ablation experiment
on MA, we set uG+I+V = 0.8 and uT = 1.2. For both UK hospitals, we set uR = 0.8,
uG+I+V = 1.0 and uT = 1.2. For the experiments on synthetic data, we set uG = 0.8,
uR = 0.9, uI = 1.0, uV = 1.1 and uT = 1.2.

Justification of the maximum-normalized distance computation. At an individual
timestep t, we assess distance via a mean absolute error normalized by the maximum between
individual entries (which keeps this value on a unit scale). A side-effect of this normalization
is that parameters that overestimate the true counts are preferred over parameters that
underestimate the true counts by the same margin. For example, if true count ykt = 20

and simulated count ỹkt = 22, then the relevant distance will be |20−22|22 = 1
11 . Instead,

if ỹkt = 18, the relevant unweighted portion of the distance will be |20−18|20 = 1
10 . This

asymmetry enforces a pessimistic bias that in our experimental circumstances would be
appropriate - e.g., when developing forecasts that will be used to determine what resources
a hospital will need to meet future demand. In any case, the scheme at most moderately
favors over prediction of utilization, compared to under utilization. Alternative distances
could be easily considered.

Scheduling the decay. We draw samples from a burn-in phase and a sampling phase.
During the burn-in phase, we anneal ε across iterations with the goals of 1) making it
converge to an optimal value for sampling, and 2) dragging the parameters to the high-
density region of the parameter space. Then, during the sampling phase, we stop the
annealing, and draw samples in standard ABC MCMC as described in Marjoram et al.
(2003), where ε is held fixed across iterations.
Crucially, in the sampling phase, we raise ε by a small value compared to the best value
found during the burn-in phase, so that we accept slightly more diverse samples than it
would have otherwise.

In the burn-in phase, we anneal ε in the following way. The upper-bound on our distance
d allows us to initialize ε to 1.0. In practice, we find that ε can often be safely initialized
to a lower value, thus reducing the number of iterations needed for convergence. We anneal
ε exponentially after each parameter proposal using hyperparameter γ. Crucially, we never
allow ε to take a value below the last accepted distance dbest, thus allowing the algorithm to
naturally converge to a value of ε that is optimal for sampling, as it is low enough that most
proposals get rejected for not being able to provide a better match to the training data. We
apply one more change to the annealing schedule: at regular intervals during the burn-in
phase, we increase ε by a fixed value p. This allows the algorithm to “escape” a local optima
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that might have been encountered along the way. We found this to be particularly useful
for fitting parameters to datasets containing fewer patients, such as single-hospital datasets.
Indeed, with fewer patients to model, the variance in the counts generated by a given set
of parameters is higher, thus it is more likely that a given set of proposed parameters gets
accepted due to a particularly "lucky" simulation, which had assigned an unusually low
distance to the proposed parameters.

Specific tuning of the decay schedule. In all our experiments, we initialize ε to 0.7,
as we find such value to be always greater than the distance generated using samples from
the prior. We fix the number of burn-in iterations to 24,000 (where one iteration makes
and evaluates a proposal for each of the 17 parameters in turn, for a total of 408,000 total
single-parameter iterations), p to 0.05, and f to 0.15. To set the annealing parameter γ,
we consider the following. The optimal, convergence value of ε varies by dataset. In partic-
ular, due to the design of our distance function, datasets with higher counts have a lower
convergence value. An approximate lower bound to the convergence value can be quickly
found for any dataset by computing the average distance between multiple sets of counts
generated with the dataset’s admissions and a fixed set of parameters, and a single repre-
sentative of such counts. Though our annealing schedule is designed to be likely to escape
local optima, we find it desirable, especially for lower-counts datasets, to set γ such that
ε does not excessively undershoot the approximate lower bound by the end of the training
iterations. Concretely, this translates to lower-counts datasets having higher γ, and thus
slower annealing, in our experiments.

Details of proposal distributions. For each transition probability τk, we propose a new
value τ∗k by sampling from a Beta distribution whose mean is the old value and with a scaling
parameter r > 0 that determines the variance: τ∗k ∼ Beta(rτk, r(1 − τk)). We set r = 100
for the recovering probabilities and to r = 200 (lower entropy) for death probabilities.

For the mode of each duration probability λs,h, we propose a new value λ∗s,h by sampling
from a truncated normal distribution with mean at λs,h and a variance of 0.25: λ∗,s,h ∼
TruncNorm(λs,h, 0.25, [1, D]). For the log of each temperature parameter νs,h, we sample
a new value from a normal distribution centered at the old value, with a variance of 0.01:
ν∗s,h ∼ Norm(νs,h, 0.01).

Warm start. At the start of the simulated training period, it is unrealistic to assume
that the initial patients in each hospital stage have only just been admitted to said stage
(i.e. they are all at day zero of their stay). Thus, in an effort to more realistically model
the progression through the hospital of the initial population, we apply a simple ’warm
start’ heuristic, in which we simulate the admission of the initial population in each state by
uniformly distributing them during 5 days previous to day zero. We increase the admissions
by 3% in both G and V to account for any patients who exit the hospital before the official
start of the training period.

Details of ensembling. For all experiment, we collect 200 samples each from 10 different
runs of the algorithm, resulting in 2000 total samples. We only use runs which we have
verified to have converged to similar values of ε, and thus produce samples that explain the
training counts equally well.
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Figure D.1: Trend of accepted distanced on one run of ABC for ACED-HMM on South
Tees hospital data. Each data point indicates a set of parametrs that has surpassed the first
stage of acceptance (distance below ε). Around iteration 230,000 the algorithm got stuck in a local
optimum, where few proposals were getting accepted. The resetting of ε after iteration 300,000
helped the algorithm get unstuck from the local optimum.

Appendix E. Details of Baseline Autoregressive-Poisson forecasting
model

We consider a simple probabilistic model for univariate counts, the latent autoregressive
Poisson or just AR-Poisson for short.

Model Setup. Suppose across T days we observe a univariate time series y1:T = [y1, y2, . . . yT ],
where yt ∈ {0, 1, 2, . . .} indicates the count of patients in a particular stage on day t. Our
goal is to develop forecasts for the next F days, given all previous observations, using a
conditional probabilistic model p(y(T+1):(T+F ) | y1:T ).

We consider an order-1 autoregressive process as our latent variable model, where each
timestep has a latent real value ft ∈ R. We capture dependency across time in the latent
series f1:T , and model each count yt as conditionally independent given ft:

p(f1:T , y1:T ) =

T∏
t=1

p(ft | ft−1) ·
T∏
t=1

p(yt | ft). (8)

For most timesteps t > 1, we generate the latent value ft using the previous value ft−1:
p(ft | ft−1) = Normal(β0 + β1ft−1, σ

2), t ∈ 2, 3, . . . (9)
The very first value f1 is generated with mean β0:

p(f1) = Normal(β0, σ2) (10)
The latent-generating parameters are coefficient vector β = [β0, β1] and standard deviation
σ > 0.

We then generate each observed count yt using a Poisson likelihood, setting the mean
parameter by transforming the latent ft to a positive value via the exponential:

p(yt | ft) = Poisson(exp(ft)). (11)
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Forecasting Method. We wish to first sample from the posterior over parameters β, σ,
and latent values f : p(β, σ, f1:T | y1:T ). We place the follow vague priors over the parameters:

β0 ∼ Normal(0, 0.1), (12)
β1 ∼ Normal(1, 0.1), (13)
σ ∼ HalfNormal(0.1). (14)

We then use the No-U-Turn sampler (Hoffman and Gelman, 2014) to perform Markov chain
Monte Carlo approximation of the posterior. Our NUTS sampler is implemented using the
PyMC3 toolbox (Salvatier et al., 2016).

Given a single posterior sample indexed by s, with parameters βs, σs and latents f s1:T ,
we can then use the generative model to draw a forecast of latents f and counts y for the
next F days:

fsT+τ ∼ Normal(βs0 + βs1f
s
T+τ−1, σ

s), τ ∈ 1, . . . F (15)
ysT+τ ∼ Poisson(exp(fsT+τ )), τ ∈ 1, . . . F (16)

We typically draw a forecast of S distinct samples, using S = 1000 or more to be sure
we’re capturing the full distribution.

Results. In Fig. 3, we use the AR-Poisson as a baseline comparison for our ABC model.
Given the series of counts from the last 28 days of training data, we forecast ahead F = 31
days. We draw S = 1000 forecast samples and depict the 2.5th, 50th, and 97.5th percentiles
of those samples. We can see that our ABC model has clear advantages over the AR-Poisson,
which is limited to capturing linear trends and makes the assumption that the future is like
the past.

Appendix F. Details of IHME Baseline forecasts for U.S. States

As a baseline, we consider the public forecasts produced by the IHME COVID-19 forecasting
project (Reiner et al., 2021). These forecasts are available online12 and contain predicted
daily occupancy count values for each U.S. state for several stages of hospital care: total
beds, ICU beds, ventilators, and deaths.

The core IHME model is targeted at forecasting deaths for each U. S. state, using an
SEIR compartment model that accounts for a number of local factors. Historical daily death
counts represent the primary training data used, though other observed information such
as testing and mobility are included. Unlike our approach, the IHME model is not adapted
to fit to the observed bed occupancy counts in hospitals in the region of interest. The
methodology behind IHME’s forecasts for hospital resource use (total bed usage, ventilator
usage, etc.) is described in Section 8 of the Supplementary Information (IHME COVID-
19 Forecasting Team, 2020) released alongside their published research article on overall
forecasting in the United States (Reiner et al., 2021).

To forecast hospital resource utilization, the IHME team performs a “microsimulation”
that starts at deaths and works backwards. For each death, they assume the patient stayed
the previous 6 days in the ICU. They further simulate for each death, a predicted age bin
using local age distribution data, and simulate a number of individuals in the same age
group as having also entering the hospital on the same day but surviving. Most of this

12. https://www.healthdata.org/covid/data-downloads
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“age-hospital-cohort” stay in the general ward (outside the ICU) for 8 days total. A small
fraction of this “age-hospital-cohort” (6.3%) are assumed to be admitted to the ICU and stay
for 20 days total (the middle 13 in the ICU). 85% of individuals in the ICU are assumed to
need the ventilator. These parametric assumptions are reasonably informed by the literature
from a specific location (New York state).

Compared to this approach, we argue that our approach of adapting a flexible hospital
model with learnable transition probabilities and durations to a region of interest, rather
than simply making fixed assumptions for all states, has substantial benefits.

Comparison of IHME forecasts to our methods. Several factors make it difficult
to perform a fair head-to-head comparison between our model and the published IHME
forecasts. First, the data signals used to train each method differ: while our method uses
counts from all available stages, the IHME model relies primarily on daily deaths. Second,
our forecasts require an admission count time series for the test period, while IHME does
not. Finally, while our model is open source and can be customized to any training period
and any region of interest provided the requisite data, we could not find a way to easily get
produce customized forecasts from IHME, so we rely on their published numbers. Thus,
any comparison between our methods and IHME should be more of a sanity check than a
true comparison of equals. We expect that our method, because it is provided more detailed
training data for the region of interest and especially given admissions for the testing period,
should outperform the IHME baseline.

Acknowledging these challenges, we try to set up as fair a comparison as possible by
taking the IHME forecasts released during our target testing period (Jan. 11 - Feb. 11,
2021), which are the ones dated 2021-01-15 on the IHME website. Manual inspection of
the CSV files released on this date indicates that these models had access to death counts
until Jan. 11 but not afterwards. We suggest this because before this date values of the
“deaths_mean” field in the released spreadsheet are whole numbers, after this date values
are fractional indicating an expected value forecast rather than an actual observed count.

Raw forecast information from IHME website. We used the “reference” forecast
released by the IHME for 2021-01-15, which provides daily count forecasts of hospital usage
for each state of interest. IHME also releases best-case or worst-case projections (imagining
different levels of mask usage or movement restrictions), but we did not use these, taking
the “reference” forecasts as a reasonable projection of the status quo.

Each field in the released forecast has a “mean”, “lower”, and “upper” value indicating
the expected value as well as lower and upper values to suggest an interval of uncertainty.

We used the following fields of IHME “reference” forecasts.

• admis(mean/lower/upper) : hospital admissions by day

• allbed(mean/lower/upper) : total covid beds needed by day

• ICUbed(mean/lower/upper) : ICU covid beds needed by day

• InvVen(mean/lower/upper) : invasive ventilation needed by day

• deaths(mean/lower/upper) : daily covid deaths
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We used the PDF file IHME_COVID_19_Data_Release_Information_Sheetṗdf included
in the ZIP file downloaded from IHME as a “data dictionary” to understand these field
names and values.

Standardizing IHME forecasts our data format. We transformed the raw data daily
counts to obtain values for our stages by performing the following element-wise subtrac-
tions/additions of the above raw data fields:

• General Ward G : allbed - ICUbed

• In ICU without ventilator I: ICUbed - InvVen

• In ICU on ventilator V: InvVen

• In ICU total I + V: ICUbed

• Terminal T: deaths

MAE computation. To obtain an MAE estimate from IHME at a specific stage (G, I,V,T)
for a given state, we look in the testing period simply evaluate the MAE for the mean fore-
cast of that stage compared to our ground-truth count values of that stage (as described in
App. A).

Intervals To obtain some estimates of uncertainty, we compute the MAE between the true
counts and the lower and upper estimates. This is all we can do given only mean/lower/upper
values at each day (rather than a proper distribution).

We emphasize the IHME reported interval is not comparable to the intervals produced
by our models. Our model’s intervals are more easily interpreted in the standard way: they
provide a range of plausible values for what the MAE would be given another similar-sized
sample from the posterior.
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