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Goals

What: We wish to model demand for hospital resources (daily usage of
general ward beds, ICU beds, and ventilators) during the COVID-19
pandemic in an interpretable and broadly applicable fashion.

Why:
- To inform decision-makers of future demand
- To assess the societal value of possible interventions.

How:

- We created a new model, the ACED-HMM, to model individual hospital
trajectories with a compact parameterization - interpretability

‘We used Approximate Bayesian Computation to fit a posterior
distribution over model parameters given daily census count data from a
specific site/region without patient-specific data. - broad applicability

Model: ACED-HMM

Y Aggregate Count Explicit Duration Hidden Markov Model
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Note: The model requires admissions as input, even for the forecasting period.

Duration model. Sample duration A for stage k and health status / as:
Alk,h ~ Cat(nf’h, ,rt’,;"')

where vector T¥" defines a categorical probability mass function over 1, 2, ... D days.

We use a simple two-parameter formulation with mode 2" and temperature v*"
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Priors. All parameters (transition probabilities and duration modes/temperatures) are
given informative priors to match statistics released by the US CDC in Sept. 2020.

Approximate Bayesian Computation (ABC)

Purpose of ABC. Estimate a posterior over all ACED-HMM parameters given daily
counts from a training period of a target site (a single hospital or all sites in a region).

‘Why ABC? Easier to specify distance function than a likelihood. Support extensions to
model (simulator) without requiring new derivations/implementation.
Algorithm [1]: Let © be the set of parameters that specify the behavior of ACED-HMM.

Let a be the annealing constant for £. Initialize £ «+ 1.0.

Let d(yy.7,¥1:7) € [0,1] be the distance function between the ground truth

census counts (yy.7), and the simulated census count (¥1.7), over T timesteps.
Initialize each 6 in © as a sample from its own prior distribution 7y(:).

Repeat until converged:
S0. For each parameter 6 in ©:

S1. Propose a move to # according to a parameter-specific transition
kernel gg(0 — 6'). Let ©' < ©[0 — ¢'].

Generate y.p using ACED-HMM with ©'.

If d(y1.7,¥1.7) < € go to S4, and otherwise stay at © and go to S6.
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7o (6")g (6" — 0)

h=h(6,0") = min(1, m

)

S5.

o

With probability h, accept © (6 + ©'), and set dpest < d(y1.7.1:7)-
Otherwise stay at ©.

S6. Update ¢ according to: & +— max(dpest, ). Then go to S1.

We define the distance as a normalized weighted mean-absolute-error:
T K
where wyy. is a scalar weight that determines the relative “importance” of match-

ing the counts at time ¢ and stage k.
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Posterior Distribution after training on MA
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Forecasts on MA

Training window: Nov. 11, 2020- January 11, 2021
Forecasting window: January 12 — February 11 2021
‘We assume we know the true hospital admissions in the forecasting window.
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Retrospective What-If Scenarios on CA

In late 2020, hospitals in California experienced a surge that led to aggressive lockdowns.

We explore our model’s potential to answer what-if questions about how different hypothetical
pharmaceutical treatments rolled out on November 2™ (dashed line) might have helped avoid the

surge in counts in CA hospitals that led to lockdown. (Note: our model is not a causal model).

Scenario 1 (top plot): Reduction in admitted patients by 25%, 50% and 87%, simulating the use of
two drugs: bamlanivimab and etesevimab [2]. The therapy is assumed to be administered to 100% of
people who test positive for COVID-19 and who are deemed at high risk of hospitalization, with a

linear ramp-up schedule of 30 days. Number of Patients in ICU
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Scenario 2: 25% decrease in length-of-stay for recovering patients, simulating the use of
Remdesivir [3].
Number of Patients in ICU
6000 4 tue
—— No intervention

5000 25% decrease +
—— in durations for i

£
3 4000 recovering patients
S
2 3000 i
v ] s
8 2000

1000

0 7 14 21 28 35 42 49 56 63 70 7 84
Days since Nov 11th

ACED-HMM + ABC 65.0 61.5 - 68.9| 15.7 14.5 - 16.9| 34.0 32.6 - 35.7
MA IHME|1066.1 *543.4 - 1754.9|104.0 =*15.6 - 257.9| 25.7 *41.4 - 106.5
Mean Test y|1141.6 392.5 249.1

For ACED-HMM, we report the 2.5% and 97.5% percentiles of the MAE across multiple sets of samples from the posterior.
For IHME, as a distribution of forecasted samples is not available, we report the MAE computed using the mean estimate
forecast, as well as the MAE computed using the provided lower and upper estimates count values. This second kind of
interval (marked with *) should not be directly compared to the first, as they capture different aspects of uncertainty.
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