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Abstract

Deployed early warning systems in clinical set-
tings often suffer from high false alarm rates that
limit trustworthiness and overall utility. Despite
the need to control false alarms, the dominant
classifier training paradigm remains minimizing
cross entropy, a loss function that has no direct
relationship to false alarms. While existing ef-
forts often use post-hoc threshold selection to
address false alarms, in this paper we build on
recent work to suggest a more comprehensive
solution. We develop a family of tight bounds
using the sigmoid function that let us maximize
recall while satisfying a constraint that holds false
alarms below a specified tolerance. This new dif-
ferentiable objective can be easily integrated with
generalized linear models, neural networks, and
any other classifier trained with minibatch gradi-
ent descent. Through experiments on toy data and
acute care mortality risk prediction, we demon-
strate our method can satisfy a desired constraint
on false alarms interpretable to clinical staff while
achieving better recall than alternatives.

1. Introduction

Recent progress in machine learning has led to several
promising automated systems designed to produce early
warning alerts in critical care hospital settings via near real-
time processing of vital signs and laboratory events (Hyland
et al., 2020; Sendak et al., 2020b; Wellner et al., 2017).

Alerts are intended to indicate at-risk patients and trigger
additional attention from clinical staff, who can assess the
patient and possibly provide needed interventions. Within
the high-demand setting of a modern intensive care unit
(ICU), clinical staff have limited time that could be put to
many productive uses; it is critical that automated alerts
properly identify patients who need help and do not cause
staff to focus on patients who do not need further attention.
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An unneeded alert, also known as a false alarm or a false
positive, has two detrimental consequences. In the moment,
it pulls resources away from where they could be better
used. In the long term, too many false alarms can cause
clinical staff to distrust the alerts all together, a phenomenon
known as alarm fatigue (Cvach, 2012; Deb & Claudio,
2015; Sendelbach & Funk, 2013). Some false alarms are in-
evitable, especially in many clinical tasks where the adverse
outcome to predict is rare. For example, for the mortality
risk models we study later, only about 9% of patients die in
the hospital. It is critical that alert systems are designed to
avoid alarm fatigue and ensure the tool has an overall net
positive benefit. If the tool fails to limit false alarms to an
acceptable rate, the tool may be ignored completely.

The key challenge of designing alert systems is thus to bal-
ance the false alarm rate (related to precision) with the true
positive rate (known as recall) (Romero-Brufau et al., 2015).
In the clinic, recall measures the fraction of truly at-risk
patients correctly identified by an alert. Unfortunately, com-
mon objectives for training binary classifiers, such as cross
entropy, are not designed to limit false alarms. Many early
warning systems (Hyland et al., 2020; Futoma et al., 2017)
train using standard objectives and only balance false alarm
concerns in a secondary threshold selection or early stopping
stage after training. Such post-hoc adjustment is limited in
scope and may not identify the ideal tradeoff between recall
and precision. Our experiments show the deficiency of these
objectives even with post-hoc adjustment.

To overcome this challenge, in this paper we show that any
binary classifier trained via stochastic gradient descent can,
via a simple change to its loss function, be directly steered
toward solutions that directly limit false alarms while maxi-
mizing recall. Put simply, our objective seeks to maximize
the number of truly at-risk patients who are helped by alerts
(maximize recall), subject to meeting an interpretable guar-
antee on false alarm rates: ensure less than (1 — a)% of
all alarms are false ones. We build on previous technical
methods (Eban et al., 2017), but offer tighter bounds and
more rigorous empirical validation in clinical settings.

This paper makes two key contributions:

1. Advocacy of max recall under a false alarm con-
straint as a good objective for clinical early warning sys-
tems. While this objective has been suggested as a possibil-
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ity in other applications (Eban et al., 2017), we find that for
clinical early warning systems it is particularly suitable yet
underutilized. Our experiments suggest that our objective
can lead to absolute gains of 0.1 - 0.15 in both recall and
precision on heldout data in clinical settings (see Sec. 5.4
and 5.3). Our chosen objective is further interpretable to
clinical staff, as they can naturally specify a maximum false
alarm rate that would be tolerable in their daily practice.

2. New tractable bounds for optimizing recall while con-
straining false alarm rate. The false alarm rate itself is not
a decomposible function that can be easily optimized via
minibatch stochastic gradient descent (SGD) (see Sec. 4).
Previous work by Eban et al. (2017) has suggested hinge-
loss based bounds that are amenable to SGD. However, we
find these bounds are too loose and lead to suboptimal per-
formance. We derive tighter bounds based on the sigmoid
function that are key to obtaining high-quality performance.

We view these contributions as critical steps to achieving
early warning systems that not only achieve high-quality
performance on heldout data, but also actually work when
prospectively deployed.

Contributions to Interpretability. Overall, we take a
broad view of the need for “interpretability” in early warn-
ing prediction systems, suggesting that trust by clinical
staff is of course critically needed but this does not require
“whitebox” understanding of all parts of a model. Instead,
following Sendak et al. (2020a) we view our work as a way
to build feedback loops with stakeholders by defining clear
evaluation-based criteria needed to obtain trust (limiting
false alarm rates below a desired limit).

2. Background

Our goal is to develop a prediction model with parameters
6 that can consume a feature vector € R” summarizing
a patient’s recent history in a clinical setting, and produce
a real-valued score fy(z) indicating confidence that some
(rare) outcome will occur. Large negative scores indicate cer-
tainty the outcome will not occur and large positive scores
indicate certainty it will occur. Using a threshold b, we can
translate this score into a decision §(x) = fop(x) > b. In the
intended use case, a positive decision alerts clinical staff.

To train this model, we’ll assume a dataset X,Y of N
labeled examples: X = {z,}Y_ )Y = {y,}_,, with
known binary label y,, € {0, 1} indicating which outcome
happened to patient n with features ,, € R”. In many
cases, the outcome of interest (such as mortality or dete-
rioriation) is rare. We’ll denote the rare label of interest
as “positive” or 1, and the common label as 0. Let NV de-
note the total number of positive true labels in a dataset:
N, = 25:1 Yn. Similarly, N_ denotes the number of
negative true labels.

2.1. Evaluation metrics for binary classifiers

Many performance metrics exist for binary classifiers, each
appropriate for different goals (Romero-Brufau et al., 2015).

Binary cross entropy (BCE) is defined as:

Z log

Here, o(f) = 1 +e —— denotes the logistic sigmoid function,
which maps real-valued inputs f € R to the unit interval
0<o(f) <L

BCE(0, X,Y) )y”(U(—fe(mn)»l_yn)

BCE is by far the most common loss used to train binary
classifiers. It is well-motivated as a smooth, differentiable
upper bound on error rate as well as via maximum likelihood
arguments. However, for problems where the positive class
is rare but critical, error rate alone will not capture the key
applied questions, as explained below.

True positive count. A “true positive” is an example whose
true label is positive and predicted label is also positive. We
define a dataset’s true positive count as:

tpe(6, X,Y) = > fo(n) Z 2(Yn, fo(zn) — b).
n:y,=1 n=1
Here, z(-,-) is the zero-one function, which is one when
both arguments have positive sign and zero otherwise. This
count is bounded: 0 < tpc < N,.

False positive count. A “false positive” is an example
whose true label is negative but whose predicted label is
positive. False positives lead to false alarms in a clinical
setting. We define a dataset’s false positive count as:

pr(Q,X, Y): Z y@ xn Z

n:yYn, =0 n=1
This count is also bounded: 0 < fpc < N_.

ynaf@ xn) - b)

Recall. Recall is defined as the fraction of all examples that
are truly positive which are correctly also called positive by
the thresholded decision function g(-) € {0, 1}.

recall(§, X,Y) = ﬁtpc(@,X, Y), (D
where N, (V') counts all positive labels in training set Y.

Precision (aka True Alarm Rate). Precision is defined as
the fraction of all positive alerts produced by the decision
function that are truly positive. This is formalized as:

1
tpe(0, X,Y) + fpc(9, X,Y)
where the denominator counts all positive calls, which must
either be true positive or false positive. Another name for

precision is the “true alarm rate”. Precision is equal to one
minus the false alarm rate.

prec(0, X,Y) =

tpc(97 X7 Y)7
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2.2. Suggested Optimization Objective

Consider a clinical prediction task trying to identify patients
most at risk of a rare adverse outcome, so that additional
interventions can be prioritized for these patients. Interven-
tions are a limited resource with a cost (otherwise they could
be applied to all patients). At minimum, hospital staff time
is limited, and thus an alarm raised for a patient who does
not need extra care means that other (perhaps more needy)
patients do not get attention. Furthermore, if staff eventually
notice that an alarm is rarely related to its intended outcome,
they will likely be inclined to ignore it.

It is thus critical to view designing an effective prediction
system for this setting as satisfying two goals. First, guar-
anteeing the false alarm rate is below some critical value
established in conversation with care staff to ensure trust.
Second, achieving an alert that would help the most possible
patients given this constraint.

These goals naturally lead to this optimization problem:

max recall(8, X,Y'), subj. to: prec(d, X,Y) > «, (2)
where 1 — « is set to the maximum allowed false alarm rate.
This objective has been previously used (Eban et al., 2017).
However, most ML early warning systems are not trained
to satisfy some target minimum precision (or equivalently,
maximum false alarm rate).

2.3. Baseline: Post-Hoc Threshold Search

After training a binary classifier to minimize cross entropy
(or some other suitable objective), we can always perform
a post-hoc search procedure to better identify a decision-
making threshold b that meets desired performance criteria.
In our applications, if we have a maximum allowable false
alarm rate in mind, we can fix the parameterized score func-
tion fy(-) obtained via training and simply select among a
grid of candidate threshold values b the one that best sat-
isfies the original objective in Eq. (2). Graphically, for a
linear classifier this is akin to trying all possible decision
boundary hyperplanes parallel to the one produced via orig-
inal training. As a one-dimensional grid search, precision
and recall at each threshold can be directly computed from
validation data. No gradients or bounds are needed.

This approach is helpful but not optimal, as shown in the
toy dataset analysis in Fig. 2. While the post-hoc search
certainly improves recall compared to not performing the
search, compared to our method it delivers sub-optimal
precision (the 0.68 precision from threshold search is much
worse than the 0.81 delivered by our method). If the target
false alarm rate was 20% (meaning searching for precision
above 0.8), there simply is no boundary parallel to the BCE-
optimal boundary that can meet that standard. Thus, one-
dimensional post-hoc search is inadequate, which we later
further demonstrate on real clinical tasks.

3. Related Work

Optimization methods. Many method-development efforts
have focused on optimization objectives that directly re-
late to the performance metric of interest (Rakotomamonjy,
2004; Burges et al., 2006; Yue et al., 2007; Lipton et al.,
2014; Eban et al., 2017). However, most of these meth-
ods either pursue different objectives (less appropriate for
our use case), have limited scalability, or have deficien-
cies in approximation quality. Metzler & Croft (2005) and
Caruana & Niculescu-Mizil (2006) each propose methods
of optimizing the area under the precision-recall curve di-
rectly. However, these rely on expensive sweeps across
large parameter grids, and further cannot guarantee the qual-
ity of a specific decision threshold as our later method can.
Joachims (2005) use contingency tables to optimize pre-
cision at fixed recall, but the cost of computing a single
gradient is generally quadratic in the number of training
examples. Fathony & Kolter (2020) propose an adversarial
prediction framework that allows gradient-based training
for a variety of non-decomposable objectives (such as pre-
cision at fixed recall). However, their method suffers from
scalability issues (requiring quadratic runtime in the number
of examples), and further requires a complex model that
can sample data features as well as labels-given-features.
Our work solves the direct, conceptually simpler problem
of predicting labels from features well.

Our work builds upon the work of Eban et al. (2017), which
developed a tractable framework for gradient-based learning
of non-decomposable losses. Using hinge-loss functions
to create bounds on the number of true and false positives,
Eban et al. provide a solution for our intended objective
in Eq. (2). However, we find in practice these hinge loss
bounds are too loose (see Fig. 1). We develop tighter bounds
with substantial gains in later experiments.

Clinical methods. Some false alarm control methods have
been directly developed for acute care contexts (Chambrin
(2001), Antink et al. (2016), Eerikdinen et al. (2016)). Au-
Yeung et al. (2019) suggest a method to reduce false alarms
in the ICU via post-hoc feature selection using random
forest, but do not encode any limit on false alarms into
the training objective. Hever et al. (2019) reduce false
arrhythmia alarms in the ICU by training a random forests
to match expert rules. However, such rules are not easily
available for all tasks. Our work allows direct control of the
false alarm rate and can be applied to large EHR datasets
with multiple data sources.

4. Methods

We begin by restating that our ideal optimization objective
given a training dataset X, Y = {x,,,y,})_, is to maxi-
mize recall subject to a minimum precision constraint as in
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Figure 1. Top: Comparison between the hinge and sigmoid upper
bounds for counting false positives. Our proposed sigmoid bound,
highlighted in blue, is smooth, differentiable, and noticeably tighter
than the hinge bound of Eban et al. (2017). Bottom: Comparison
between the hinge and sigmoid lower bounds for counting true
positives. Our proposed sigmoid bound is tighter and also non-
negative, which is crucial to maintain the validity of our constraint
on precision (as discussed around Eq. (4)).

Eq. (2).

While we can easily evaluate this objective for any can-
didate parameters 6, training our model — that is, finding
good values for parameters 8* given a dataset — is diffi-
cult. Not only is the optimization problem constrained, but
the key barrier is that the functions involved are based on
sums of the flat zero-one function (shown in Fig. 1) and
thus have zero gradients at almost all # values. We could
use gradient-free methods, but these are inefficient when
6 is high-dimensional as it will be in most realistic clini-
cal settings involving many input variables. We thus need
to transform this problem into one where modern efficient
gradient-based learning will be effective.

Eban et al. (2017) suggest a promising route that leads to
an unconstrained objective with non-zero gradients, which
we review here and build upon. First, recognizing that max-
imizing recall is equivalent to maximizing the true positive
count, can rewrite our problem in terms of true and false
positive counts:

tpe(f) 3)
tpc(0) + fpc(6) —
Here for simplicity we write the counts as a function of
parameters 6 alone. While these counts do depend on the
observed training data X and Y, we assume this data is
known and fixed throughout.

max tpc(d), subj. to:

Next, we can rewrite our problem in an equivalent “stan-
dardized” form by framing the constraint as a function that
must be less than or equal to zero, and minimizing instead
of maximizing:

Inain - tpC(@), (4)

o

tpe(0) + = afpc(&) <0.
g(0)

We emphasize that this transformation is only valid when the
sum of tpc + fpc is strictly positive, as we need to multiply
both sides of the constraint in Eq. (3) by this sum.

subj. to:

Using well-established optimization theory (Chong & Zak,
2013), we can transform this to an equivalent unconstrained
optimization problem via the penalty method with Lagrange
multiplier A > 0:

min —tpe(6,z,y) + Ag* (6) (5)

where g (0) is a penalty function whose value is either zero
or the function g(6) defined in Eq. (4), whichever is larger.
Naturally, if the penalty function is zero, this means the
desired constraint is satisfied: the precision is at least « (and
false alarm rate is less than 1 — «).

This unconstrained formulation avoids the need to handle a
difficult non-linear constraint, but still faces the key problem
that the objective as a function of 6 is flat. That is, infinitesi-
mal changes in # are unlikely to move any single example’s
prediction from one side of the decision boundary to the
other, and thus both tpc and fpc counts will remain the same
for almost all possible small changes to €. This flatness is
a problem because it means any attempt at gradient-based
training will not move the parameters 6 from their original
(poor performing) values.

4.1. Previous Tractable Bounds based on Hinge Loss

Eban et al. (2017) obtain tractability - informative non-zero
gradients at almost all possible # parameter values - for
the objective in Eq. (5) by defining non-flat bounds on the
counts using the hinge loss function h(y, a) = max(0,1 —
s(y)a), where s(y) is the sign function, which returns +1
ify=1and —1if y =0, and a € R is a real score.

First, the false positive count is upper bounded:
fpc"(0) = > hlyn, foln)). 6)
n:yy, =0
Similarly, the true positive count is lower bounded by:
tpch(G) = Z 1- h(yna.f@(xn)) (7)
n:yn,=1
Both bounds are visualized in Fig. 1. In these visuals, we
can observe two key problems with the hinge loss bounds
suggested by Eban et al. (2017). First, they are loose bounds:
for just one term in the sum each bound can differ by 1 or
more from the ideal value, this makes the total error (across
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all N_ or N, terms in each sum) large. Second, the sum
fpch +tpc” could be less than zero, as tpc may be negative.
This condition would spoil the penalty function’s interpre-
tation as a valid bound on precision, since we derived it
assuming the denominator in Eq. (3) was strictly positive.

4.2. New Tighter Bounds via Sigmoid Functions

We now derive two families of functions that bound the
zero-one function, one family of upper bounds (for the false
positive count) and one family of lower bounds (for the
true postive count). These are illustrated in Fig. 1. Both
bounds are found via a shifted and scaled version of the
sigmoid function o(a) = H% Concrete bounds can be
obtained by fixing tolerance hyperparameters to specific
values. By varying these values, a user can make the bounds
tighter (more accurate but with flatter gradients) or looser
(more tractable). Even modest hyperparameter values de-
liver far tighter bounds than the loose hinge loss bounds
of Eban et al. (2017). Furthermore, we’ll show that under
all conditions our bounds meet the denominator positivity
condition required for our unconstrained objective to be
properly limiting the false alarm rate.

Upper bound on fpc. We first seek an improved upper
bound on the zero-one function, denoted u(a). We want this
smooth function to meet the following conditions necessary
for a tight upper bound:

u(—o0) = 0 u(—e) =4

u(+00) = 1+796 uw(0)~1+46
where tolerance factors ¢ > 0,0 > 0 and scaling factor
v > 1 are specified by the user. Choosing large values
makes the function smoother, choosing small values makes
the bound tighter. In the limitasy — 1,¢ — 0,9 — 0, our
function will converge to the zero-one function.

A natural choice for this function to make it a sigmoid whose
amplitude is 1+~d with learnable horizontal shift and slope:
Ump(a) = (1 +yd)o(ma +b), (8)
where the two parameters are slope m € R and intercept
b € R. By definition, this class of function satisfies the
two limit conditions in Eq. (8). To meet the two approxima-
tion constraints, we can numerically solve for the optimal
parameters that minimize squared error:
1, b= argmin (6 — iy, 5(—€))2 4 (14 6 =t 5(0))2.
meER,bER
Thus, for user-specified tolerance parameters -, d, €, we can
obtain a tight non-flat differentiable upper bound on the
false positive count:
fpe?(6) = 0=y (1 + 90 (rinfo(wa) +5). (9
If we concretely select a modest setting of our tolerance
parameters — v = 7.00, § = 0.021, ¢ = 0.735 — we use

BFGS to solve the minimization problem and yield 7 =
8.26 and b = 2.09.

Lower bound on tpc. A challenge of defining a lower
bound is that we need our lower bound to be strictly non-
negative for all inputs, so that the denominator positivity
condition in Eq. (3) is satisfied. To achieve this, let us first
redefine the true positive count so that to each zero-one
function we add a factor of aS . This means each example’s
contribution is either {34, 1+74} instead of {0, 1}. Shifting
the utility of all positive examples upward by a positive
constant should not impact any learned boundary, as the net
gain for classifying each example correctly is still the same.

We thus seek a lower bound £ of a vertically-shifted zero-one
function, meeting the conditions:

l(—00) =0
((+00) = 1+ 78

S

£(0) =~
U(+é) =140

Again tolerance factors € > 0,0 > 0,7 > 1 are specified
by the user, with similar interpretation as before.

We define again a horizontally-shifted-and-scaled sigmoid
function whose amplitude is 1 + 74:

U p(@) = (1+70)o(ha + b) (10)
where the two parameters are slope 7 € R and intercept
b € R. Again, this function by definition solves the limit
conditions, and we can numerically ensure the approximate
conditions by solving for /m, b that minimize squared error:

argmin(d — £, 5(0))% + (1 +0 — £, ;(€))?
MER,bER ’ ’
Thus, given tolerance parameters 7, 8, €, we obtain a lower
bound on the vertically-shifted true positive count:

tpe” (0) = SN (1 +38)a(mfs(z,) +0) (1)

Concretely fixing tolerances to y = 7.00, 6 =0.035, ¢ =
0.99, we obtain m = 5.19 and b = —3.54.

4.3. Practical Implementation

Our proposed bounds allow tractable gradient-based
optimization of our intended maximum-recall-while-
guaranteeing-precision objective in Eq. (2). Here we dis-
cuss key practical engineering efforts required to make our
bounds useable on large clinical datasets.

Overcome local optima via many diverse initializations.
Linear-boundary classifiers like logistic regression (mini-
mizing BCE) or support vector machines (minimizing hinge
loss), have convex training problems. However, due to our
sigmoid bounds even when our classifier fy is a generalized
linear model, our objective is non-convex and thus sensitive
to initialization. To avoid poor local optima, we take the best
of many random initializations (in terms of validation-set
performance). While performing many runs and then keep-
ing the best makes the runtime of training visibly higher
than alternatives, we argue this is worth it in an overall
cost-benefit analysis: our method yields substantial gains in
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improved recall (patients for whom alerts would be benefi-
cial). In most clinical settings training happens infrequently
(once every few weeks or months).

In our experiments, we try two kinds of initialization. First,
in “cold start” runs the weights are initialized via Glorot
procedures (Glorot & Bengio, 2010). Second, “warm start”
runs start at small perturbations of the optimal weights found
by pretraining on a BCE objective. We typically try 25
initializations of each type.

Minibatch gradient descent. If datasets are small enough,
we can directly optimize our unconstrained objective in
Eq. (5) using gradients computed from all examples. How-
ever, to scale to large datasets we use stochastic estimates
of the gradient from a minibatch. Estimating unbiased gra-
dients of the gT function in Eq. (5) from a minibatch is
difficult, because the maximum is performed outside the
sum over all training examples. To address this, we simply
select large minibatches (500 or more examples). We find
that while not formally unbiased, in practice this choice
is effective. We reach high quality solutions that meet the
intended precision when assessed on the entire training set.

In practice, for large datasets (MIMIC and e-ICU) we use
the ADAM algorithm with minibatches of size 512, 1024
and the full training set. For all methods, we try a range
of learning rates (from 0.0005 to 0.005) and select the best
performing one on the validation set.

Penalty strength hyperparameter selection. We must
choose a value for penalty strength A > 0. We found that
trying two A values, 1000 and 10000, was sufficient for
the desired false alarm constraint to be satisfied (penalty
function g evaluates to less than zero after training). We use
these values for all experiments.

5. Experimental Evaluation
5.1. Results on Synthetic Data

To gain insight, we designed a toy classification task with
2 features where the differences between objectives can
be easily visualized. Our goal is to train a logistic regres-
sion (LR) classifier whose decisions maximize recall sub-
ject to a maximum false alarm rate of 20% (minimum pre-
cision of @ = 0.8). Fig. 2 shows all training examples
(N4 = 120, N_ = 450) together with the learned decision
boundaries for four ways of training the LR model. We
try BCE with default threshold and BCE with threshold
selected to satisfy our a-valued constraint (or get as close as
possible). We further show Eban et al. (2017)’s hinge-bound
approach as well as our proposed tighter sigmoid bounds.

Only our method can meet the desired precision constraint,
all others do not achieve 0.8 precision even on the training
data, instead producing noticeably worse precision values

Binary cross entropy (BCE) BCE + threshold search
Prec:0.681 Rec:0.642 CE:177.1 Prec:0.684 Rec:0.900 CE: 223.5

3 M 3 =)

r0.8

r0.6

<0 < 0
r0.4 0.4
-14 -14
2] F0.2 273 ro.2
-3 . o.0 -3 =00
-2 0 2
X1 X1
Hinge Bound Sigmoid Bound (Proposed)
Prec:0.726 Rec:0.442 CE: 214.6 Prec:0.810 Rec:0.708 CE: 208.7
3 = 3 =)

N

ro.8 ro.s

r0.6 r0.6
r0.4 r0.4

ro0.2

Figure 2. Linear decision boundaries found under various objec-
tives on synthetic task in Sec. 5.1. Red and blue points represent
positive and negative examples respectively. The black line repre-
sents the decision boundary. Our goal is to find a decision boundary
that maximizes recall at a minimum precision of 0.8. We report the
precision, recall and cross entropy (CE) for 4 different solutions.
Top: BCE with default threshold and post-hoc selected threshold.
Both are unable to exceed a precision of 0.684. Bottom Left: Opti-
mizing the unconstrained objective with Eban et al. (2017)’s hinge
bound also fails to meet the desired precision of 0.8 . Bottom Right:
Our proposed sigmoid bound is the only one that satisfies the de-
sired minimum precision requirement of 0.8, while simultaneously
achieving better recall than the hinge bound.

of 0.68-0.72. Even though the hinge bound is trained to
meet the target o value, the bound’s looseness precludes an
adequate solution. To further verify the quality of our bound,
we perform an exhaustive search of possible LR parameters
(two weights, one bias) to optimize our objective in Eq. (2).
(This search is only feasible in low-dimensional problems.)
Our sigmoid bound reached precision 0.81 and recall 0.70,
which differs only slightly from the grid search optimum
of precision 0.80 and recall 0.74, whereas the hinge bound
only reaches a precision of 0.72 and recall 0.44.

5.2. Results on Semi-Synthetic Data

Clinical tasks often includes many features, most of which
are only weakly relevant to the outcome. To assess our
method’s robustness to such features, we designed a semi-
synthetic task. Building on the toy generation process that
produced features x,, and labels y,, shown in Fig. 2, we ap-
pend to each z,, vector a 98-dimensional feature vector rep-
resenting vitals, labs, and demographics for one randomly-
chosen patient-stay in the MIMIC-III dataset (Johnson et al.
(2016)). To assess generalization, we split data into 684
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Table 1. Comparison of precision and recall for semi-synthetic ex-
periment. Among the 3 methods, only our proposed sigmoid bound
finds a linear boundary that satisfies the 0.8 minimum precision
requirement. Additionally, our method achieves better precision
and recall on the heldout test set, implying better generalization.

Method Precision Recall

Train | Valid | Test | Train | Valid | Test

BCE + threshold search | 0.70 | 0.69 | 0.69 | 0.61 | 0.72 | 0.61

Hinge Bound 0.63 | 0.61 | 0.63 | 072 | 0.75 | 0.71

Sigmoid Bound (Ours) | 0.80 | 0.72 | 0.74 | 0.67 | 0.77 | 0.76

train, 513 valid, and 512 test examples. We stress that the
labels remain the same, and our goal remains to reach min-
imum precision of & = 0.8. To avoid local optima, we
run our method many times (25 random seeds, 2 initializa-
tion scale factors, and 2 \ values). We select the best run
that maximizes validation set recall while meeting the «
constraint.

Table 1 shows that even in this high-dimensional problem
(100 total features), only our method can meet the desired
0.8 precision (others range from 0.63-0.7). Our method also
exceeds others on test-set recall by at least 0.05.

5.3. Results: Mortality Prediction on MIMIC

We assessed our method in an acute care setting using the
MIMIC-III dataset. Our goal is to predict in-hospital mor-
tality after observing the entire sequence of a patient’s stay
up to the last measurement discharge or death. We extract
2 demographics, 10 vitals, and 94 lab measurements dis-
cretized to hourly bins for 34472 patient stays using MIMIC
Extract (Wang et al., 2020). Our train/valid./test splits yield
20682/6895/6895 patient-stays, with ~ 9.5% patient stays
resulting in death. Each patient-stay’s multivariate time-
series is transformed into a feature vector as follows. For
each raw feature, we apply 7 summarization functions (miss-
ing indicator; time since last non-missing; plus min, max,
median, slope, and variance of non-missing values) to 4 pos-
sible time windows (0-100%, 50%-100%, last 16 hr, and last
24 hr). The resulting feature vector has size 106x7x4=2968.

Our training goal is to predict in-hospital mortality while
limiting with false alarm rate less than 10% (precision o >
0.9). We found this « challenging to meet on heldout data,
so to select the best runs we seek validation set precision
> 0.8. We assessed both logistic regression (LR) models
and multi-layer perceptrons (MLP) with 1 hidden layer (32
hidden units; RELU activation). To avoid local optima, we
search 25 random seeds, 2 initialization scale factors (1.0
and 3.0), 2 X values, and 5 weight decays.

Table 2 shows our tight sigmoid bounds satisfy the false
alarm constraints while improving recall from 0.54 to 0.69
for LR models and from 0.69 to 0.72 for MLPs compared to
BCE training. Moreover, our model consistently beats the
hinge bound baseline.

1.00 4
—— train (best model)

—— valid (best model)

precision

—— train (best model)
— valid (best_model)

[ 25 50 75 100 125 150 175 200
epochs

Figure 3. Evidence of successful false-alarm-averse training of a
model for MIMIC mortality risk prediction. Every 50 epochs, the
desired minimum precision « is stair-stepped up towards 0.9. After
each step, the model’s empirical precision is quickly improved to
approximately satisfy the desired « via gradient-based learning.
Each gray line is one run from a random initialization, the best
performing run (maximizing recall while satisfying our precision
goals on training and validation) is highlighted in color.

5.4. Results: Mortality Prediction on eICU

The eICU Collaborative Research Database (Pollard et al.
(2018)) contains data from many critical care units through-
out the U.S. We extract 3 demographics, 8§ vitals, and 6
lab measurements discretized to hourly bins using eICU
Extract (Wang et al. (2020)) for 72670 patient stays. We
featurize each patient-stay the same way as MIMIC (see
Sec. 5.3), yielding patient-stay vectors of size 17x7x4=417.
Our train/valid/test split yields 43642/14509/14518 patient-
stays, with ~ 8.2% resulting in death.

Our training goal is again to predict in-hospital mortality
using the entire stay. Again, we enforce training set preci-
sion above v = 0.9 on the training set (limiting false alarm
rates to less than 10%), and enforce validation set precision
above 0.8. We train the same LR and MLP models as before
with the same hyperparameter grids (see Sec. 5.3).

In Table 3, we again find our tight sigmoid bounds satisty
the false alarm constraints while improving recall from 0.10
to 0.20 for LR and from 0.28 to 0.30 for MLP compared to
standard BCE objectives. Moreover, our model again beats
the hinge bound baseline soundly and consistently.

To better understand the gains of our method in terms of
common evaluation criteria, in Appendix A, we compare
the receiver operating curves and precision-recall curves of
all logistic regression methods on the eICU dataset. Our
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Table 2. Predicting in-hospital mortality on MIMIC-III, when the goal is to maximize recall at a minimum precision of o = 0.9 (false
alarm rate < 0.1). While all methods meet the precision constraint, our sigmoid bound achieves better recall on heldout test data.

Method Precision Recall % of 1500 runs
Train Valid Test | Train Valid Test | w/ prec. > «
BCE + threshold search 090 084 086 | 057 059 0.54 -
Logistic Hinge Bound (Eban et 2}1.? 096 084 085 | 0.69 0.65 0.62 -
Regression Sigmoid Bound (warm init.) | 090 0.86 0.86 | 0.73 0.71 0.67 14.5%
Sigmoid Bound (cold init.) 090 084 085 | 076 0.73 0.69 3.1%
BCE + threshold search 090 083 084 | 076 0.72 0.69 -
Hinge Bound (Eban et al.) 098 0.89 091 0.74 0.67 0.63 -
1-layer MLP Sigmoid Bound (warm init.) | 091 0.86 0.86 | 0.76  0.72 0.68 15.0%
Sigmoid Bound (cold init.) 092 083 082 | 082 075 0.72 55.3%

Table 3. Predicting in-hospital mortality on e-ICU, when the goal is to maximize recall at a minimum precision of o = 0.9 (false alarm
rate < 0.1). While all methods meet the precision constraint, our sigmoid bound achieves better recall on heldout test data. For logistic
regression gains are especially strong: recall of 0.20 for ours vs. 0.10 for post-hoc threshold search and 0.02 for the hinge bound.

Method Precision Recall % of 1500 runs
Train Valid Test | Train Valid Test | w/prec. > o
BCE + threshold search 090 094 086 | 0.12 0.12 0.10 -
Logistic Hinge Bound (Eban et 2.11.? 0.86 075 080 | 0.02 0.02 0.02 -
Regression Sigmoid Bound (warm init.) | 0.91 083 079 | 0.12 0.14 0.10 13%
Sigmoid Bound (cold init.) 091 082 079 | 021 020 0.20 1%
BCE + threshold search 090 0.85 080 | 032 030 0.28 -
Hinge Bound (Eban et al.) 099 083 077 | 036 025 0.23 -
1-layer MLP Sigmoid Bound (warm init.) | 0.91 0.81 0.80 | 0.07 0.07 0.06 5%
Sigmoid Bound (cold init.) 092 081 078 | 038 033 0.30 30%

method shows consistent gains in both curves. We do stress
that measuring area under the ROC curve (as is commonly
done) has little to do with the quality of the alerts produced
by a specific operating threshold (Romero-Brufau et al.,
2015).

6. Conclusion

Limitations. A key drawback of our method is the vulnera-
bility to local optima due to non-convexity of the sigmoid
bound. Given reasonable compute power at training time,
we find we can overcome local optima by taking the best
of many runs. For MLPs, cold starts using Glorot initial-
ization (Glorot & Bengio, 2010) satisfy the false alarm
contraint more often than warm starts from a BCE solution
(see Tables 2-3).

Selection of the constraint value to enforce « is critical to
success. While we selected « values in our experiments
that seemed reasonable, in practice, o needs to be chosen in
collaboration with experienced clinical staff. Our method’s
performance is sensitive to several other hyperparameters,
including the penalty strength \ and the tolerance param-
eters -, d, € that govern the tractability-tightness tradeoff
for our bound. While we found reasonable values for our

tasks, future applications may need to tune values for better
performance.

Finally, although our model’s goal is to achieve false alarms
below a user-specified rate on the training set, it does not
guarantee to satisfy this constraint on heldout datases (see
Table 3). Improving generalization guarantees is an open
research question.

Advantages. The main advantage of our method is the
ability to enforce a maximum desired false alarm rate in
acute care settings. This is visually demonstrated in Figure
3, where the desired « is stepped up every 50 epochs, and the
empirical precision on heldout data responds accordingly.
Given an acceptable false alarm rate, our objective clearly
outperforms alternatives like post-hoc threshold search.

Our bounds can work with any classifier trained via SGD.
Future work could use our bounds to train more flexible dif-
ferentiable classifiers such as recurrent NNs, convolutional
NN, or graph NNs.

For improved interpretability, future work can explore the
integration of our loss with penalities for weight sparsity
using L1-norm (Tibshirani, 1996) or LO-norm (Ustun &
Rudin, 2016) penalties.
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A. Further Results

At the request of an anonymous reviewer, in Fig. A.1 we
provide the full receiver operating curve and precision-recall
curve for all possible objectives for training logistic regres-
sion on the eICU dataset. We see that our proposed method
delivers noticeable gains especially in the precision-recall
curve, which we argue is more suitable to early warning
systems.
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Figure A.1. Tradeoffs between the decisions produced by logistic regression models trained using different optimization objectives on the
eICU dataset (top row: validation set; bottom row: test set). Each line traces out the performance of a single method while varying its
decision threshold. Left column: Receiver operating curve (ROC), comparing true positive rate (TPR, y-axis) to false positive rate (FPR,
x-axis). Right column: Precision-recall curve, comparing precision (also known as positive predictive value (PPV), y-axis) to recall (TPR,
x-axis). Our sigmoid bound and Eban et al. (2017)’s hinge bound were trained to maximize recall subject to a constraint on precision:
above 0.9 on training set; above 0.8 on validation set. The shaded regions for each method on the precision-recall curves denote thresholds
satisfying precision above 0.8 on validation set. The selected operating point for each method (chosen to maximize our optimization
objective on the validation set) is shown as a red cross on the precision-recall curves.



