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Abstract

Early warning prediction systems can suf-
fer from high false alarm rates that limit
utility, especially in settings with high class
imbalance such as healthcare. Despite the
widespread need to control false alarms, the
dominant classifier training paradigm remains
minimizing cross entropy, a loss function
which does not treat false alarms differently
than other types of mistakes. While exist-
ing efforts often try to reduce false alarms by
post-hoc threshold selection after training, we
suggest a comprehensive solution by changing
the loss function used to train the classifier.
Our proposed objective maximizes recall while
enforcing a constraint requiring precision to
exceed a specified value. We make our objec-
tive tractable for gradient-based optimization
by developing tight sigmoidal bounds on the
counts needed to compute precision and recall.
Our objective is applicable to any classifier
trainable via gradient descent, including linear
models and neural networks. When predict-
ing mortality risk across two large hospital
datasets, we show how our method satisfies a
desired constraint on false alarms while achiev-
ing better recall than alternatives.

1 INTRODUCTION
Machine learning has led to state-of-the-art early warn-
ing alert systems for many high-stakes applications,
from public health to finance to earthquake safety (Es-
cobar et al., 2020; Mousavi et al., 2019; Al Banna et al.,
2020). In this work, we are motivated by applications
in healthcare, especially recent early warning alert sys-
tems for critical care hospital settings (Hyland et al.,
2020; Sendak et al., 2020; Wellner et al., 2017). In such
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settings, alerts are intended to trigger extra attention
from clinical staff on specific patients predicted to be at
risk of adverse outcomes. Clinicians have limited time
that could have many productive uses; it is critical that
automated alerts identify patients who truly need help
and do not suggest those who do not need attention.

An unneeded alert, also known as a false alarm or a
false positive, has two detrimental consequences. In the
moment, it pulls resources away from where they could
be better used. In the long term, too many false alarms
can cause clinical staff to distrust the alerts all together,
a phenomenon known as alarm fatigue (Cvach, 2012;
Deb & Claudio, 2015; Sendelbach & Funk, 2013). Some
false alarms are inevitable, especially in clinical tasks
where the adverse outcome to predict is quite rare. In
the mortality risk task we study later, only about 8-10%
of patients die in the hospital, and most survive many
hours before death. If a system is able to issue alerts
throughout a patient’s stay, it is critical that the model
is designed to avoid alarm fatigue and deliver overall
net benefit. If the tool fails to limit false alarms to an
acceptable rate, alerts may be ignored completely.

The key challenge of designing alert systems is thus
to balance the false alarm rate (related to precision)
with the true positive rate (known as recall) (Romero-
Brufau et al., 2015). In the clinic, recall measures the
fraction of truly at-risk patients correctly identified
by an alert. Unfortunately, standard objectives for
training early-warning classifiers, such as binary cross
entropy (BCE), are not designed specifically to address
false alarms. Many early warning systems for clinical
settings (Hyland et al., 2020; Futoma et al., 2017) are
trained using such objectives and only balance false
alarm concerns in a secondary threshold selection or
early stopping stage after training. Such post-hoc
adjustment is limited and may not identify the ideal
tradeoff between recall and precision. Our experiments1
show the deficiency of binary cross entropy even with
post-hoc adjustment or per-class weighting.

To overcome this challenge, in this paper we show that

1Code URL: github.com/tufts-ml/false-alarm-control

https://github.com/tufts-ml/false-alarm-control
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any binary classifier trainable via stochastic gradient
descent (SGD) can, by changing its loss function, be
steered toward solutions that offer better control of
false alarms. Our proposed objective seeks to maximize
the number of truly at-risk patients who are helped by
alerts (maximize recall), subject to meeting a guarantee
on the fraction of all alarms that will be false.

This paper makes two key contributions:

1. New tractable bounds for maximizing re-
call subject to a minimum precision constraint.
While it is easy to compute a model’s precision on a con-
crete dataset, it is not tractable to compute gradients
with respect to precision, making optimization difficult.
Previous work by Eban et al. (2017) suggested surro-
gate bounds based on the hinge loss that are amenable
to SGD. However, we find these bounds are too loose
and lead to suboptimal performance. We thus derive a
family of bounds based on the logistic sigmoid function
that can be made arbitrarily tight. We find our new
bounds achieve far better performance.

2. Demonstration of empirical success on a re-
alistic clinical task. While our constrained optimiza-
tion objective has been suggested before for general-
purpose settings (Eban et al., 2017), we find that for
clinical early warning systems it is particularly suitable
yet not thoroughly studied. Recent methods for false
alarm control (Fathony & Kolter, 2020; Tsoi et al., 2021)
focus evaluation on small, repurposed tabular datasets,
not realistic scenarios for early warning system de-
ployment. This leaves open the critical question of
performance in real-world clinical settings. Our experi-
ments on two large electronic health records datasets
suggest that our proposed objective can lead to ab-
solute gains of 0.01-0.15 in recall while satisfying the
desired precision constraint(see Sec. 5.3 and 5.4).

We view these contributions as critical steps to achiev-
ing effective early warning systems in clinical settings.
We emphasize that none of our technical innovations
are specific to healthcare; early warning systems in any
domain can benefit from our approach.

2 BACKGROUND

When developing an early warning alarm system, our
goal is to estimate a prediction model with parameters θ
that can consume a feature vector x ∈ RD and produce
a real-valued score fθ(x) indicating confidence that
some (rare) outcome will occur. Large negative scores
indicate certainty the outcome will not occur and large
positive scores indicate certainty it will occur. Using
a scalar threshold b, we can translate this score into a
binary decision ŷ(x), which equals 1 if fθ(x) > b and 0
otherwise. In the intended use case, a positive decision
causes the early warning system to trigger an alarm.

To train this model, we’ll assume we have a dataset
X,Y of N labeled examples: X = {xn}Nn=1, Y =
{yn}Nn=1, with known binary label yn ∈ {0, 1} indicat-
ing which outcome happened to the example at index
n with features xn ∈ RD. In many cases, the outcome
of interest (such as mortality) is rare. We’ll refer to the
rare label of interest as “positive” or 1, and the common
label as “negative” or 0. Let N+ denote the total count
of positive true labels in a dataset: N+ =

∑N
n=1 yn.

Similarly, N− gives the count of negative true labels.

2.1 Evaluation metrics for binary classifiers

Many performance metrics exist for binary classifiers,
each appropriate for different goals (Romero-Brufau
et al., 2015). We review relevant metrics here.

Binary cross entropy (BCE) is defined as

BCE(θ,X, Y ) =

N∑
n=1

log
(
σ(fθ(xn))

yn(σ(−fθ(xn)))1−yn
)
.

Here, σ(f) = 1
1+e−f is the logistic sigmoid function,

which maps real-valued inputs f ∈ R to the unit in-
terval 0 ≤ σ(f) ≤ 1. BCE is the most common loss
used to train binary classifiers, motivated as a smooth
upper bound on error rate (after scaling by 1

N ) as well
as via maximum likelihood arguments. However, for
problems where the positive class is rare but critical,
neither error rate nor BCE can capture the key applied
questions as all types of mistakes are treated equally.

True positive count. A “true positive” is an example
whose true label is positive and predicted label is also
positive. We define a dataset’s true positive count as:

tpc(θ,X, Y ) =
∑

n:yn=1

ŷθ(xn) =
∑

n:yn=1

z(fθ(xn)− b).

Here, z(·) is the zero-one function, which is one if its
argument has positive sign and zero otherwise. This
count is bounded: 0 ≤ tpc ≤ N+.

False positive count. A “false positive” is an example
whose true label is negative but whose predicted label
is positive. False positives mean the early warning
system produces a false alarm. We define a dataset’s
false positive count as:

fpc(θ,X, Y )=
∑

n:yn=0

ŷθ(xn) =
∑

n:yn=0

z(fθ(xn)− b).

This count is also bounded: 0 ≤ fpc ≤ N−.

Recall. Recall is the fraction of all truly positive
examples that are also called positive by the classifier:

recall(θ,X, Y ) =
tpc(θ,X, Y )

N+(Y )
, (1)

where N+(Y ) counts the positive labels in dataset Y .

Precision (aka True Alarm Rate). Precision is
defined as the fraction of all positive alerts produced
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by the classifier that are truly positive,

prec(θ,X, Y ) =
tpc(θ,X, Y )

tpc(θ,X, Y ) + fpc(θ,X, Y )
,

where the denominator counts all alerts (positive calls),
which must either be true positive or false positive.
Another name for precision is the “true alarm rate”.
Precision is equal to one minus the false alarm rate.

2.2 Suggested Optimization Objective

Consider a clinical prediction task trying to identify
patients at risk of a rare adverse outcome, so that
additional interventions can be prioritized for these
patients. Interventions are a limited resource with a
cost (otherwise they could be applied to all patients).
At minimum, hospital staff time is limited, and thus an
alarm raised for a patient who does not need extra care
means that other (perhaps more needy) patients do not
get attention. Furthermore, if staff become habituated
to viewing alarms as rarely related to the intended
outcome and thus unhelpful, they may be inclined to
ignore them. Similar concerns about false alarms shape
early warning systems in many other domains.

It is thus critical to view designing an effective early
warning system as satisfying two goals. First, guar-
anteeing the false alarm rate is below some critical
value established in conversation with stakeholders to
ensure utility and avoid alarm fatigue. Second, achiev-
ing alerts that would successfully alarm (and hopefully
help mitigate) the most possible adverse events.

These goals can be naturally formalized as the following
optimization problem:

max
θ

recall(θ,X, Y ), s.t. prec(θ,X, Y ) ≥ α, (2)

where α is set to the minimum desired precision (equiv-
alently, 1−α is the maximum false alarm rate). While
this objective has been suggested before (Eban et al.,
2017), in practice most ML early warning systems are
not trained to satisfy some target minimum precision.

One could ask why we intend on constraining precision
rather than recall. To answer this, we argue that
our proposed precision constraint reflects the limited
resources of the system (staff time and trust), while
constraining recall does not. If we constrained recall to
at least 85%, the system could only alarm for 85% of
needy patients when 90% or 95% could be saved with
little degradation of precision.

2.3 Baseline: Post-Hoc Threshold Search

After training a binary classifier to minimize cross en-
tropy (or some other suitable objective), we can always
perform a post-hoc search procedure to better iden-
tify a decision-making threshold b that meets desired
performance criteria. In our applications, if we have a
maximum allowable false alarm rate in mind, we can

fix the parameterized score function fθ(·) obtained via
training and simply select among a grid of candidate
threshold values the one that best satisfies the original
objective in Eq. (2). Graphically, for a linear classifier
this is akin to trying all possible decision boundary
hyperplanes parallel to the one produced via original
training. As a one-dimensional grid search, precision
and recall at each threshold can be easily computed,
without any gradients or bounds needed.

This approach is helpful but far from optimal, as shown
in Fig. 2, where we consider a synthetic dataset with
D = 2 features where we wish to achieve a minimum
precision of α = 0.9. Even with this post-hoc search,
the optimal linear classifier trained via BCE cannot
exceed a precision of 0.68, well below the desired pre-
cision of 0.9. Later experiments show that post-hoc
search also delivers sub-par results in real clinical tasks.

3 RELATED WORK

Optimization methods. Many previous efforts have
focused on optimization objectives that target classifier
performance metrics to try to balance precision and
recall in some fashion (Rakotomamonjy, 2004; Burges
et al., 2006; Yue et al., 2007; Lipton et al., 2014). As
we review below, most of these methods either pursue
different objectives (less appropriate for our use case
than Eq. (2)), have limited scalability to large datasets,
or have deficiencies in approximation quality.

Optimizing area under the precision-recall curve (AU-
RPC) has been pursued by Metzler & Croft (2005) and
Caruana & Niculescu-Mizil (2006), as well as recently
by Ramzi et al. (2021) and Qi et al. (2021), who both
propose tractable surrogate losses for gradient-based op-
timization. However, optimizing AUPRC cannot maxi-
mize the quality of recall at a specific precision value,
as our later method can. Figure B.4 in the supplement
provides a real-data example of where one method dom-
inates in AUPRC, but another (ours) achieves a better
recall at the desired false alarm rate. Similar concerns
exist for approaches that optimize the F-measure, such
as the sigmoid approximations of Tsoi et al. (2021) or
the pseudo-linear methods of Narasimhan et al. (2015)
and Puthiya Parambath et al. (2014).

Fathony & Kolter (2020)’s adversarial prediction (AP)
framework allows gradient-based training for a variety
of non-decomposable objectives (such as our Eq. (2)).
However, their AP method suffers from scalability is-
sues, with runtime cubic in the number of examples in
each minibatch. Our work is conceptually simpler and
keeps runtime linear in the number of examples. Scal-
ability is also a concern for the methods of Joachims
(2005), which pursue optimizing precision at fixed recall
at cost quadratic in the number of examples.
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Figure 1: Illustration of the zero-one functions used to count
false positives (top) and true positives (bottom), as well as
bounds that make gradient-based learning feasible. In both
plots, our family of sigmoid bounds is noticeably tighter
than the hinge bound of Eban et al. (2017). Bottom panel:
We bound a 0-1 loss that is vertically-shifted by +γδ, so
our bound is non-negative for all inputs (unlike the hinge)
and thus maintains the validity of our precision constraint
as discussed around Eq. (4).

We build upon the work of Eban et al. (2017), which
developed a framework for gradient-based learning of
non-decomposable losses like our objective in Eq. (2).
Eban et al. accomplish this via tractable hinge-loss
bounds of the counts of true and false positives (as
detailed in Sec. 4.1). However, we find in practice these
hinge bounds are so loose (see Fig. 1) that they cannot
solve the problem: solutions often do not satisfy the
desired precision constraint (see Fig. 2). We will show
that our tighter bounds and more careful treatment of
the optimization problem lead to noticeably better solu-
tions. Our surrogate bound ideas originally appeared in
a preliminary workshop paper (Rath & Hughes, 2021).
This present paper offers more rigorous conceptual jus-
tification as well as substantially expanded empirical
evaluation (comparing to more alternative methods as
well as more realistic “continual monitoring” tasks).

Clinical methods. Some false alarm control meth-
ods have been directly developed for use in a hospital
(Chambrin (2001), Antink et al. (2016), Eerikäinen
et al. (2016)). Au-Yeung et al. (2019) reduce false
alarms in the ICU via post-hoc feature selection, but
do not encode limits on false alarms into any training
objective. Hever et al. (2019) reduce false alarms for
arrhythmia by training random forests to match expert
rules. However, such rules are not easily available for
all tasks. Our work allows direct control of the desired
precision level and applies to many models and tasks.

4 METHODS
Our ideal optimization objective given a training
dataset X,Y = {xn, yn}Nn=1 is to maximize recall sub-
ject to a minimum precision constraint, as in Eq. (2).
While we can easily evaluate this objective for any
candidate parameters θ, training our model – that is,
finding good values for parameters θ given a dataset – is
difficult. The key barrier is that the functions involved
are based on sums of the flat zero-one function (shown
in Fig. 1) and thus have gradient values equal to zero
at almost all θ values. We could use gradient-free meth-
ods, but these are inefficient when θ is high-dimensional
as it will be in most real settings involving many input
variables. We need to transform this problem so that
modern gradient-based learning will be effective.

Eban et al. (2017) suggest a promising route that leads
to an unconstrained objective with non-zero gradients,
which we review here and build upon. First, recognizing
that maximizing recall is equivalent to maximizing the
true positive count, can rewrite our problem in terms
of true and false positive counts:

max
θ

tpc(θ), subj. to:
tpc(θ)

tpc(θ) + fpc(θ)
≥ α. (3)

Here for simplicity we write the counts as a function of
parameters θ alone. While these counts do depend on
the observed training data X and Y , we assume this
data is known and fixed throughout training.

Next, we can rewrite our problem in an equivalent
“standardized” form by framing the constraint as a
function that must be less than or equal to zero, and
minimizing the negative instead of maximizing:

min
θ

− tpc(θ), (4)

subj. to: −tpc(θ) + α

1− α
fpc(θ)︸ ︷︷ ︸

g(θ)

≤ 0.

We emphasize that this transformation is only valid
when the sum of tpc + fpc is strictly positive, as we
need to multiply both sides of the constraint in Eq. (3)
by this sum while preserving the intended inequality.

Using well-established optimization theory (Chong &
Żak, 2013), we can transform this to an equivalent
unconstrained optimization problem via the penalty
method with Lagrange multiplier λ > 0:

min
θ
−tpc(θ) + λmax(0, g(θ)) (5)

Here, g(θ) is the penalty function defined in Eq. (4).
If this penalty function is zero or less than zero, this
means the desired constraint is satisfied : the precision
is at least α.

This unconstrained formulation avoids the need to han-
dle a difficult non-linear constraint, but still faces the
key problem that the objective as a function of θ is
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flat. That is, infinitesimal changes in θ are unlikely to
move any example’s prediction from one side of the
decision boundary to the other, and thus both tpc
and fpc counts will remain the same for almost all
small changes to θ. This flatness is a problem because
it means any attempt at gradient-based training will
not move the parameters θ from their original (poor
performing) values.

4.1 Previous Bounds using Hinge Loss

Eban et al. (2017) obtain tractability - informative non-
zero gradients at almost all possible θ parameter values
- by defining non-flat bounds on the counts using the
hinge loss function h(y, a) = max(0, 1− s(y)a), where
a ∈ R is a real value and s(y) is the sign function,
which returns +1 if y = 1 and −1 if y = 0.

First, the false positive count is upper bounded by
fpch(θ) =

∑
n:yn=0 h(yn, fθ(xn)). (6)

Similarly, the true positive count is lower bounded by
tpch(θ) =

∑
n:yn=1 1− h(yn, fθ(xn)). (7)

These bounds can replace the tpc and fpc terms in
Eq. (5), which is then minimized using a gradient-
based solver. These hinge bounds are visualized in
Fig. 1, where we can observe two key problems. First,
they are loose bounds: for just one term in the sum
each bound can differ by 1 or more from the ideal value.
Aggregated across all N− or N+ terms, the total error
can be substantial. The looseness of the hinge bounds
of Eban et al. (2017) can result in a fundamentally
different optimal decision boundary than our proposed
tighter sigmoid bounds (introduced later in Sec. 4.2),
as illustrated in Fig 2. Second, the sum fpch + tpch
could be less than zero, as tpch may be negative. This
condition would spoil the interpretation of the objec-
tive in Eq. (5) as equivalent to guaranteeing a specific
minimum precision α, since we derived it assuming the
denominator in Eq. (3) was strictly positive.

4.2 New Tighter Sigmoid Bounds

We now derive two families of functions that bound the
zero-one function, one family of upper bounds (for the
false positive count) and one family of lower bounds
(for the true postive count). These are illustrated in
Fig. 1. Both bounds are formed by shifting and scaling
the logistic sigmoid function σ(a) = 1

1+e−a . Concrete
bounds can be obtained by fixing tolerance hyperpa-
rameters to specific values. By varying tolerances, a
user can make the bounds tighter (more accurate but
with flatter gradients) or looser (more tractable). Rea-
sonable settings deliver tighter bounds than the hinge
bounds of Eban et al. (2017). Furthermore, we’ll show
that under all conditions our bounds meet the positivity
condition required by the denominator in Eq. (3).

Upper bound on fpc. We first seek a non-flat upper

bound on the zero-one function, denoted u(a). We want
this smooth function to meet the following conditions
necessary for a tight upper bound:

u(−∞)→ 0 u(−ε) ≈ δ (8)
u(+∞)→ 1 + γδ u(0) ≈ 1 + δ

where tolerance factors ε > 0, δ > 0 and scaling factor
γ ≥ 1 are specified by the user. Large values make
the function smoother; small values make the bound
tighter. In the limit as γ → 1, ε → 0, δ → 0, our
function converges to the zero-one function.

A natural choice for u(a) is to make it a sigmoid whose
amplitude is 1 + γδ with learnable slope and shift,

um,b(a) = (1 + γδ)σ(ma+ b), (9)
where the two parameters are slope m ∈ R and inter-
cept b ∈ R. By definition, this class of function satisfies
the two limit conditions in Eq. (8). To meet the two
approximation constraints, we can numerically solve for
the optimal parameters that minimize squared error:
m̂, b̂ = argmin

m∈R,b∈R
(δ − um,b(−ε))2 + (1 + δ − um,b(0))2.

Thus, for user-specified tolerance parameters γ, δ, ε, we
can obtain a tight non-flat differentiable upper bound
on the false positive count:

fpcσ(θ) =
∑
n:yn=0(1 + γδ)σ(m̂fθ(xn) + b̂). (10)

If we concretely select a modest setting of our tolerance
parameters – γ = 7.00, δ = 0.035, ε = 0.75 – we use
BFGS to solve the minimization problem and yield
slope m̂ = 6.85 and shift b̂ = 1.59.

Vertically shifting tpc to enable valid lower
bounds without changing the optimal parame-
ter. When defining a lower bound for true positive
counts, the bound should be strictly positive for all
inputs, so that the denominator positivity condition
in Eq. (3) is satisfied. First, we pick a small positive
constant γδ (where γ > 0, δ > 0 are not necessarily
the same values used to define fpc above). Now, we
redefine the true positive count function by adding this
small constant to each zero-one function:

tpcγ,δ(θ) =
∑
n:yn=1 γδ + z(fθ(xn)) (11)

This vertical shift is visualized in Fig. 1.

Instead of the original unconstrained problem in Eq. 5,
we then solve a revised optimization problem:

min
θ
− tpcγ,δ(θ) + λmax(0, gγ,δ(θ)), (12)

gγ,δ(θ) = −tpcγ,δ(θ) + α
1−α fpc(θ) + γδN+.

Here the constraint function gγ,δ differs from the origi-
nal g by substituting tpcγ,δ and adding constant γδN+.

Lemma 4.1. Vertically shifting the true positive count
does not alter the optimal parameter. Given fixed values
of scalars λ, α, γ, δ, both Eq (5) and Eq. (12) have the
same optimal parameter θ∗.
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Proof. For all possible θ, we have g(θ) = gγ,δ(θ), be-
cause inside gγ,θ the constant added in the−tpcγ,δ term
is exactly canceled by the extra additive constant term
γδN+. Thus, the penalty terms in the two objectives
will always yield the same values. The minimization
objectives thus differ only by an additive constant (tpc
vs. tpcγ,δ) and will have the same local optima.

Lower bound for the shifted tpc. We now seek a
lower bound ` of our vertically-shifted zero-one function,
meeting the conditions:

`(−∞)→ 0 `(0) ≈ δ (13)
`(+∞)→ 1 + γδ `(+ε̃) ≈ 1 + δ

Again tolerance factors ε > 0, δ > 0, γ ≥ 1 are specified
by the user, with similar interpretation as before. We
emphasize that this lower bound ` is a distinct function
from the upper bound u, as shown in Fig. 1. Even
if we set the tolerance parameters the same for both
bounds (which is not necessary but done for simplicity),
the optimization desiderata in Eqs. (8) and (13) are
different, yielding distinct functions ` and u.

To obtain a function ` meeting the goals of Eq. (13), we
define a sigmoid function with amplitude 1 + γδ using
the same functional form as Eq. (9). Given tolerances
γ, δ, ε, our lower bound on the vertically-shifted true
positive count becomes

tpcσγδ(θ) =
∑
n:yn=1(1 + γδ)σ(m̃fθ(xn) + b̃). (14)

Again, there are two parameters: slope m̃ ∈ R and
intercept b̃ ∈ R. Using the same optimization strategies
as for the upper bound above, we solve for the values
of m̃, b̃ parameters that best match the desiderata in
Eq. (13). Concretely fixing tolerances to γ = 7.00,
δ = 0.035, ε = 0.75, we obtain m̃ = 6.85 and b̃ = −3.54.

By plugging our lower bound for tpc and our upper
bound for fpc into Eq. (12), we achieve a tractable ob-
jective amenable to gradient-based training. A strong
advantage of using strict bounds as we do is the guaran-
tee that if the optimal parameter θ∗ found by optimiz-
ing Eq. (12) satisfies the constraint penalty (the g term
evaluates to less than zero), then the precision will be
at least α. Simply using differentiable approximations
of the zero-one function instead of strict bounds would
not provide such a guarantee.

4.3 Practical Implementation

Our proposed bounds allow tractable gradient-based
optimization of our unconstrained objective in Eq. (12).
Here we discuss practical engineering efforts that make
these bounds usable on large real-world datasets.

Avoid local optima with many initializations.
Linear-boundary classifiers like logistic regression (min-
imizing BCE) or support vector machines (minimizing
hinge loss), have convex training problems. However,

due to our sigmoid bounds even when our classifier
fθ is a generalized linear model, our objective is non-
convex and thus sensitive to initialization. To avoid
poor local optima, we take the best of many random
initializations (in terms of validation-set performance),
where each run is initialized via a “Glorot” procedure
(Glorot & Bengio, 2010). While keeping the best of
many increases runtime if runs are done sequentially,
separate initializations are easily parallelized across
many computers so that overall runtime is no worse
than the longest individual run. Even without full
parallelization, we argue our approach is worthwhile for
the substantial gains in improved recall at the desired
precision, especially because training happens much
less often than prediction in a deployed alert system.

Minibatch gradient descent. If datasets are small
enough, we can optimize our unconstrained objective in
Eq. (12) using gradients computed from all examples.
To scale to larger datasets we use stochastic estimates of
the gradient from a minibatch and update parameters
via the Adam optimizer (Kingma & Ba, 2014), trying
learning rates from 0.0005 to 0.005 and selecting the
best performing one on the validation set.

Using minibatches, however, means that stochastic
estimates of the gradient of the max(0, g(θ)) term in
Eq. (12) are not unbiased, because the maximum is per-
formed outside the sum over all training examples. To
mitigate this possible bias, we simply select large mini-
batches (500 or more examples). While not formally
unbiased, in practice we find this choice is effective.
We can reach high quality solutions that meet the in-
tended precision when assessed on the entire training
set. To avoid any bias, we could incrementally update
per-batch gradients as well as their sum over iterations
for a predefined set of batches, an approach known as
Stochastic Average Gradient (Schmidt et al., 2017).

Batch size and penalty hyperparameters. In the
supplement, we study the sensitivity of performance
to batch size. Batches of 512 or 1024 examples are
preferred over larger batches. We found that trying
two λ values, 1000 and 10000, was sufficient to meet the
desired false alarm constraint (g(θ) ≤ 0 is satisfied after
training). We use these λ values in all experiments.

Runtime cost analysis. Our method’s training cost
will scale linearly in the number of examples in each
batch. Computing our unconstrained objective in
Eq. (12) at a specific θ can be done by evaluating
each of the terms fpcσ and tpcσγ,δ once, which requires
just one sigmoidal bound function evaluation (`(·) or
u(·)) for each example (see (10) and (14)). Comput-
ing the gradient has the same linear complexity as
the loss itself, using well-known complexity results for
back-propagation.
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Figure 2: Linear decision boundaries (black lines) found
by various methods on toy data when stated goal is to
maximizes recall subject to a minimum precision of α = 0.9.
Subtitles report precision, recall, and total runtime for each
method’s solution. Red and blue markers represent positive
and negative examples, respectively, for the toy dataset used
for training (Sec. 5.1). Top Left : Even with post-hoc search,
binary cross entropy (BCE) cannot exceed a precision of
0.684. Top Right : Despite including the desired α = 0.9
precision constraint in its objective, Eban et al. (2017)’s
hinge bound cannot satisfy the constraint. Bottom: Both
Fathony & Kolter (2020)’s AP method and our proposed
sigmoid bound satisfy the precision constraint; ours delivers
2x the recall of the AP solution in 1/300th of the time.

Chosen objective in practice. In pursuit of our
ideal but intractable objective in Eq. (2), optimizing
our tractable unconstrained objective in Eq. (12) is
guaranteed to produce a valid solution to the original
objective if the penalty function gγ,δ is less than or
equal to zero. In practice, we find that often optimizing
Eq. (12) is too strict and does not yield a satisfactory
result. However, another strategy, dropping the ad-
ditive constant γδN+ term in gγ,δ and then post-hoc
verifying the desired precision constraint is satisfied,
works well. We recommend trying both ways and using
validation-set performance to select the best.

5 EXPERIMENTAL EVALUATION
5.1 Results on Synthetic Data

To gain insight, we designed a toy classification task
with 2 features where the solutions favored by differ-
ent objectives can be easily visualized. Our goal is to
train a logistic regression (LR) classifier whose deci-
sions maximize recall subject to a minimum precision
constraint of α = 0.9. We illustrate the advantage of
our logistic sigmoid bound empirically by comparing
it with 5 other objectives. Fig. 2 shows all training
examples (N+ = 120, N− = 450) together with the

learned linear decision boundaries for four possible op-
timization strategies: BCE with post-hoc threshold
selection, Eban et al. (2017)’s hinge-bound approach,
Fathony & Kolter (2020)’s adversarial prediction (AP)
method, and our proposed sigmoid bound approach.
We further compare 2 other methods, class-weighted
cross entropy and a log loss surrogate bound in Sec.B.2
in the appendix.

Although the BCE solution might look reasonable, re-
call that our specific goal is to maximize recall subject
to a precision of at least 0.9. The BCE solution gets
only 0.69 precision even with post-hoc threshold search,
and thus remains quite far from the desired precision
of 0.9. Similarly, the hinge bound achieves only 0.79
precision, also falling short of our goal. Both the AP
method and our approach can satisfy the desired preci-
sion constraint. However, our proposed sigmoid bound
achieves noticeably better recall of 0.24, which is over
double the 0.11 recall found by AP.

To investigate bound quality, we verified that even after
initializing at the sigmoid bound’s better solution, opti-
mizing Eq. (5) using the hinge bound prefers to wander
away, suggesting the inadequacy of this loose bound
(see our code repository for a reproducible example).

5.2 Results on Semi-Synthetic Data

Real-world prediction tasks often include many features,
most of which are only weakly relevant to the outcome.
To assess our method’s robustness to such features, we
designed a semi-synthetic task. Adapting the toy gener-
ation process that produced the 2-dim. feature vectors
x and binary labels y in Fig. 2, we append to each
x vector a 98-dimensional feature vector representing
vitals, labs, and demographics for one randomly-chosen
patient-stay in the MIMIC-III dataset (Johnson et al.,
2016), generating 684 train, 513 valid, and 512 test
examples. Our goal is to enforce a minimum precision
of α = 0.8. We deliberately pursue a slightly lower
α here than in Sec. 5.1 to illustrate the flexibility of
our methods to meet any desired precision constraint.
Naturally, lowering the required minimum precision
leads to better recall compared to the results in Fig. 2.
To avoid local optima, we run our method many times
(25 random seeds, 2 initialization scale factors, and 2
λ values), selecting the run that maximizes validation
recall while meeting the precision constraint.

Table 1 shows that in this higher-dimensional problem
(100 total features), only our method can meet the
desired 0.8 precision even on the training set (others
range from 0.63-0.73). Our method also exceeds others
on test-set recall by at least 0.05. In terms of run-
time, most methods are fast (15 seconds), but the AP
method (Fathony & Kolter, 2020) shows poor scalabil-
ity, requiring 2.5 hours due to its cubic scaling. This
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Precision Recall Runtime
Method TrainValidTest TrainValidTest in sec.
BCE + threshold search 0.70 0.69 0.69 0.61 0.72 0.61 15
Hinge Bound 0.63 0.61 0.63 0.72 0.75 0.71 15
Adversarial Prediction (AP) 0.73 0.67 0.75 0.55 0.66 0.60 9000
Sigmoid Bound (ours) 0.80 0.72 0.74 0.67 0.77 0.76 15

Table 1: Precision-recall performance on the semi-synthetic
task (Sec. 5.2), where the goal is to maximize recall subject
to a minimum precision of α = 0.8. Only our proposed
sigmoid bound satisfies this goal on the training set. Our
method also delivers better recall on the test set than all
alternatives by at least 0.05 while keeping runtime fast.

poor scalability prevented our use of the AP method
on the larger real-world tasks below.

5.3 Per-Sequence Mortality Prediction

We now assess our method’s precision-recall perfor-
mance at mortality risk predictions on two large open-
access datasets of critical care electronic health records
(EHR): MIMIC-III and eICU. Our goal is to predict in-
hospital mortality after observing vitals and labs over
the entire sequence of a patient’s stay, up to just before
discharge or death. We enforce a minimum precision
value of α = 0.9 on the training set. We found α = 0.9
challenging to meet on heldout data even when satis-
fied at training, so to select the best runs we enforce a
minimum validation precision α′ = 0.8.

MIMIC-III data. The MIMIC-III dataset (Johnson
et al., 2016) contains deidentified open-access EHR data
from a Boston hospital from 2002-2012. We extract
2 demographics, 10 vitals, and 94 lab measurements
discretized to hourly bins for 34472 patient stays using
the MIMIC-Extract pipeline (Wang et al., 2020b). Our
train/valid./test splits have 20682/6895/6895 patient-
stays, with ∼ 9.5% patient stays resulting in death.
Each patient-stay’s multivariate time-series is trans-
formed into a feature vector as follows. For each raw
feature, we apply 7 summarization functions (missing
indicator; time since last non-missing; plus min, max,
median, slope, and variance of non-missing values) to
4 possible time windows (0-100%, 50%-100%, last 16
hr, and last 24 hr). The resulting feature vector has
size 106x7x4=2968.

eICU data. The eICU Collaborative Research
Database (Pollard et al., 2018) contains data from
59 critical care units throughout the U.S. We extract
3 demographics, 8 vitals, and 6 lab measurements dis-
cretized to hourly bins using eICU Extract (Wang et al.,
2020a) for 72670 patient stays. Our train/valid/test
splits have 43642/14509/14518 patient-stays, with
∼ 8.2% resulting in death. We featurize each patient-
stay the same way as MIMIC, yielding feature vectors
of size 17x7x4=417.

Models. On both datasets, we tried two models: logis-
tic regression (LR) and a multi-layer perceptron (MLP)

with 1 hidden layer (32 hidden units; RELU activa-
tion). We search 25 random seeds, 2 initialization scale
factors, 2 λ values, and 5 weight decays. Details for
reproducibility are in the appendix.

Mortality Prediction Results. The recall perfor-
mance of each method on both datasets can be found
in Table 2. Across 20 independent randomly-chosen
train-test partitions of both datasets, we find that all
methods can satisfy the desired precision constraint (all
methods exceed 0.9 on training and 0.8 on validation).
However, our proposed sigmoid bound method consis-
tently achieves better test-set recall values at the se-
lected operating threshold (chosen on validation data).
Compared to the BCE baseline, using a linear model
we see our method boost the test-set recall (median
across partitions) from 0.540 to 0.684 on MIMIC and
from 0.087 to 0.195 on eICU. As expected, gains from
the MLP are smaller (as a predictor gets more flexible,
it can get closer to the optimal non-linear boundary).
However, the gains are still noticeable: recall improves
from 0.689 to 0.717 on MIMIC and from 0.280 to 0.298
on eICU. Eban et al. (2017)’s hinge bound method is
worse than the BCE baseline in terms of test-set recall
on three of the four dataset-model combinations tested.

Across Table 2, recall values in on eICU are noticeably
lower than MIMIC (BCE achieves test recall of 0.5-0.7
on MIMIC but only 0.08-0.28 for eICU). This occurs
despite the desired minimum precision value remaining
the same (α = 0.9) and being satisfied in all cases. The
drop in recall performance likely occurs because we
have more available informative clinical measurements
for MIMIC than eICU (106 vs. 17). The eICU task is
also slightly more difficult: only 8% of eICU sequences
have positive labels compared to 9.5% for MIMIC. In
this challenging setting, enforcing high precision means
some modest tradeoffs with recall. We emphasize that
without enforcing sufficiently high precision, alarm fa-
tigue could render the whole system ineffective.

To better understand the gains of our method in terms
of common evaluation criteria, we present ROC and PR
curves for all methods in the appendix. Our method
shows consistent gains in both curves.

5.4 Deployment Scenario for Mortality Alerts

In order to realistically assess our proposed method as
an early warning alert for patients at risk of deterio-
ration, we consider now evaluating predictions made
every 12 hours throughout a patient’s stay, with the
outcome set to in-hospital mortality within the next 24
hours. For a patient stay lasting just over two days, we
would create and evaluate four feature vectors, repre-
senting predictions made after 12, 24, 36, and 48 hours.
This realistic setting exaggerates class imbalance (only
3% of examples are positive). To compensate, we lower
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Recall on MIMIC Recall on eICU
Method Train Test Train Test

Logistic
Regression

BCE + threshold search .572 (.566, .580) .540 (.532, .551) .100 (.096, .104) .087 (.082, .092)

Hinge Bound (Eban et al.) .696 (.691, .704) .625 (.612, .635) .018 (.015, .019) .016 (.012, .018)

Sigmoid Bound (ours) .763 (.755, .766) .684 (.675, .696) .211 (.206, .218) .195 (.188, .206)

1-layer MLP
BCE + threshold search .766 (.757, .772) .689 (.676, .708) .325 (.321, .330) .280 (.271, .290)

Hinge Bound (Eban et al.) .741 (.734, .750) .640 (.620, .654) .359 (.355, .363) .235 (.229, .246)

Sigmoid Bound (ours) .821 (.817, .827) .717 (.705, .729) .385 (.379, .392) .298 (.288, .305)

Table 2: Precision-recall performance for per-sequence in-hospital mortality prediction on MIMIC-III and eICU (Sec. 5.3),
using target precision α = 0.9 on train and α′ = 0.8 on validation. We show the 50th(5th, 95th) percentiles from 20
randomly-drawn train/validation/test partitions. While all methods meet the desired precision constraint after threshold
search, our sigmoid bound method achieves better recall on test data, especially for logistic regression models.

Figure 3: Predicting in-hospital mortality on MIMIC in a
deployable scenario (making a prediction every 12 hours),
using target precisions of α = 0.7 on train and α′ = 0.6 on
valid. Our proposed sigmoid bound improves precision by
0.026 (100’s of fewer false alarms across the 6895 patient-
stays in the test set), and improves recall by 0.01 (100’s
more truly at-risk patients identified).

the desired minimum precision to α = 0.7 on train and
α′ = 0.6 on validation. For simplicity, we featurize by
applying the same summary functions used above on 2
windows (0-100% and 90-100%).

Fig. 3 illustrates the precision-recall tradeoff on test
data for LR models in this scenario. At the chosen
operating threshold (marked as a cross), our proposed
sigmoid bound achieves better recall and precision than
alternatives. We show a similar improvement in recall
and precision in the deployment scenario for eICU in
Fig. B.5 in the appendix.

6 DISCUSSION AND CONCLUSION
We have developed new bounds based on the sigmoid
function that allow tractable gradient-based optimiza-
tion of any differentiable classifier to meet a desired
precision constraint. Our experiments evaluating in-
hospital mortality prediction on two large hospital
datasets suggest the feasibility of our approach in real

early warning applications.

Limitations. A key drawback of our method is vul-
nerability to local optima due to non-convexity of the
sigmoid bound. Given reasonable compute power at
training time, we find we can mitigate local optima by
taking the best of many runs.

For a deployment, setting α requires input from stake-
holders (at what false alarm rate would alerts be ig-
nored or not add value?). As in most real-world ML,
we expect a modest but noticeable drop between train
and heldout performance. As a rule of thumb, if the
desired heldout precision is 0.5, we recommend setting
α a bit higher (say α = 0.6) for training then enforce
α′ = 0.5 on a validation set to be sure desired perfor-
mance is achieved. Our method is sensitive to other
hyperparameters, including the penalty λ > 0 and the
tolerances γ, δ, ε that govern the tractability-tightness
tradeoff for our bound. While we found reasonable
values for our tasks, future applications may need to
tune values for better performance.

Finally, although our objective can control false alarms
on the training set, this does not guarantee this con-
straint will be satisfied on heldout data. Guaranteeing
generalization is an open research question.

Advantages. The primary advantage of our method
is the ability to steer models to satisfy a maximum de-
sired false alarm rate, in order to avoid alarm fatigue,
while maintaining linear runtime. As demonstrated
throughout our experiments, our objective clearly out-
performs alternatives like post-hoc threshold search at
maximizing recall at a desired minimum precision.

Future work could use our bounds on more flexible
classifiers that are trainable via SGD, such as recurrent
NNs, convolutional NNs, or graph NNs. For improved
interpretability, one could explore integrating our loss
with L0 and L1 norm weight sparsity penalties (Tib-
shirani, 1996; Ustun & Rudin, 2016).
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Supplementary Material:
Optimizing Early Warning Classifiers to Control False Alarms

via a Minimum Precision Constraint

Abstract

This supplement includes additional experimental results and information for understanding and
reproducing experiments. Section B provides additional results, including further toy example results,
ROC curves and precision-recall curves for all tested methods on the hospital mortality risk datasets
(Sec. B.3), results examining sensitivity to hyperparameters(Sec. B.5), and a demonstration of precision
improving over time (Sec. B.6). Details about the real-world datasets used in our experiments are in
Sec. C, and reproducible details about experimental protocols are in Sec. D.
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Figure B.1: Further results on the synthetic task from our paper’s Sec. 5.1. Here we set the desired
precision value to α = 0.8 (Fig. 2 in the main paper used α = 0.9). Each plot shows the linear decision boundary (black
line) found using a specific objective, with red and blue points represent positive and negative examples respectively. Top:
BCE and Eban et al. (2017)’s hinge bound with post-hoc selected threshold. BCE + threshold search is unable to exceed
a precision of 0.684, while hinge bound comes just short of the desired precision of 0.8, reaching 0.798 instead. Bottom
Left : Optimizing the adversarial objective proposed by Fathony & Kolter (2020) almost meets the desired precision of 0.8
but has a substantially longer training time (30x) than our proposed sigmoid bound. Bottom Right : Our proposed sigmoid
bound is the only one that satisfies the desired minimum precision requirement of 0.8, while simultaneously achieving
better recall than the other bounds.

B.1 Further Results on Toy Example

In Sec. 5.1 of the main paper, we presented a toy dataset where our method achieved better recall at a desired
precision of at least α = 0.9 than other methods. We now wish to show the same strong results hold in other
settings; there is nothing special about our choice of α = 0.9.

Here, using the same dataset, we include study a different setting, when the desired minimum precision constraint
of α = 0.8. Fig. B.1 shows results from our proposed sigmoid bound method and the same alternative methods:
minimizing BCE with post-hoc threshold selection, Eban et al. (2017)’s hinge-bound approach, Fathony & Kolter
(2020)’s adversarial prediction (AP) method).

In this additional α = 0.8 setting, again even with post-hoc search, BCE cannot achieve the desired precision. The
hinge bound also comes just short of the desired precision of 0.8. Optimizing the adversarial objective proposed
by Fathony & Kolter (2020) almost meets the desired precision of 0.8 but has a substantially longer training
time (30x) than our proposed sigmoid bound. In terms of recall, our proposed sigmoid bound achieves noticeably
better recall of 0.74, compared to AP’s 0.69 and the Hinge bound’s 0.65.



Optimizing Early Warning Classifiers to Control False Alarms via a Minimum Precision Constraint

Figure B.2: We tried a weighted cross entropy classifier, varying the cost of positive examples (R7) across 12 log-spaced
values from 0.01 to 1000. None of these met the desired precision constraint of 0.9 (the best of these got precision 0.7)

B.2 Comparison to other possible bounds

We tried 2 alternative methods on our toy 2D example from Sec. 5.1. First, we tried a weighted cross entropy
classifier, varying the cost of positive examples (R7) across 12 log-spaced values from 0.01 to 1000 (See figure
B.2). None of these met the desired precision constraint of 0.9 (the best of these got precision 0.7). Second, we
tried a log loss surrogate bound (R5) (instead of the hinge in Eban et al’s approach). Again, this did not meet
our desired 0.9 precision (it got precision=0.72, recall=0.56).

B.3 ROC and PR curves for Sequence Level Predictions of Mortality Risk

In Fig. B.3,and Fig. B.4, we provide the full receiver operating curve and precision-recall curve for all possible
objectives for training logistic regression on MIMIC and eICU. We see that our proposed method delivers
noticeable gains especially in the precision-recall curve, which we argue is more suitable to early warning systems.

B.4 Deployment Scenario for Mortality Alerts (eICU)

In order to assess our proposed method realistically as an early warning alert for patients at risk of deterioration,
we consider now evaluating predictions made every 12 hours throughout a patient’s stay, with the outcome set to
in-hospital mortality within the next 24 hours. For a patient stay lasting just over two days, we would create
and evaluate four feature vectors, representing predictions made after 12, 24, 36, and 48 hours. This realistic
setting exaggerates class imbalance (only 2.3% of examples are positive). To compensate, we lower the desired
minimum precision to α = 0.7 on train and α′ = 0.6 on validation. For simplicity, we featurize by applying the
same summary functions used above on 2 windows (0-100% and 90-100%).

Fig. B.5 illustrates the precision-recall tradeoff on test data for LR models in this scenario. At the chosen operating
point (marked as a cross), our proposed sigmoid bound achieves better recall and precision than alternatives.
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Figure B.3: Receiver operating curve (ROC, left column) and precision-recall curve (PR, right column)
for logistic regression models trained using different optimization objectives on the MIMIC dataset (top
row: validation set; bottom row: test set). Each curve shows tradeoffs in performance metrics possible while varying
the decision threshold b of a single method. Left column: Receiver operating curve (ROC), comparing true positive rate
(TPR, y-axis) to false positive rate (FPR, x-axis). Right column: Precision-recall curve, comparing precision (also known
as positive predictive value (PPV), y-axis) to recall (also known as TPR, x-axis). Our sigmoid bound and Eban et al.
(2017)’s hinge bound were trained to maximize recall subject to a constraint on precision: above 0.9 on training set; above
0.8 on validation set. Darker line segments indicate thresholds satisfying the desired precision above 0.8 on validation
set. The black “X” marker indicates the selected operating point for each method (chosen to maximize our optimization
objective on the validation set).

B.5 Sensitivity to Batch Size

We study our method’s sensitivity to batch size in Fig. B.6, by plotting the precision and recall achieved after
convergence for many random initializations at many possible settings of batch size (from 512 up to the entire
dataset), while training on the MIMIC mortality risk prediction task in the main paper. From Fig. B.6, we
conclude that while all batch sizes have some initializations outperform others in terms of precision and recall,
overall the best runs using batch sizes of 512 (orange dots) and 1024 (green dots) seem to reach higher precision
and recall values than the best runs at other batch sizes. Only runs with 512 and 1024 have precision exceed
0.25 on heldout data (validation and test). We suspect that the “folk wisdom” that small batches add helpful
“noise” to stochastic gradient descent in order to avoid bad local optima may be the reason that 512 and 1024
work better than the larger tested batch sizes.
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Figure B.4: Receiver operating curve (ROC, left column) and precision-recall curve (PR, right column)
for logistic regression models trained using different optimization objectives on the eICU dataset (top
row: validation set; bottom row: test set). Each curve shows tradeoffs in performance metrics possible while varying
the decision threshold b of a single method. Left column: Receiver operating curve (ROC), comparing true positive rate
(TPR, y-axis) to false positive rate (FPR, x-axis). Right column: Precision-recall curve, comparing precision (also known
as positive predictive value (PPV), y-axis) to recall (also known as TPR, x-axis). Our sigmoid bound and Eban et al.
(2017)’s hinge bound were trained to maximize recall subject to a constraint on precision: above 0.9 on training set; above
0.8 on validation set. Darker line segments indicate thresholds satisfying the desired precision above 0.8 on validation
set. The black “X” marker indicates the selected operating point for each method (chosen to maximize our optimization
objective on the validation set).

B.6 Demonstration of Models Satisfying Precision Constraint during Training

In figure B.7, we demonstrate our model’s ability to ramp up to any desired precision during training. While
training the MLP for sequence level predictions on MIMIC, we gradually step up the precision constraint (α) to 0.9
at every 50 epochs, and monitor the precision and recall. Consequently, we see that the model’s empirical precision
also improved to approximately satisfy the precision constraint (α). Note that ramping up the precision constraint
gradually over epochs is only shown for visual validation of our models, and is not the optimal strategy during
training, due to local optima at intermediate precision constraints. Training with a fixed precision constraint (α),
using many random initializations, is the optimal strategy to train the models with our sigmoid bound.

C DATASET DETAILS
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Figure B.5: Predicting in-hospital mortality on eICU in a deployable scenario (making a prediction every 12 hours), using
target precisions of α = 0.7 on train and α′ = 0.6 on valid. Our proposed sigmoid bound improves precision by 0.02 (100’s
of fewer false alarms across the 14518 patient-stays in the test set), and improves recall by 0.014 (100’s more truly at-risk
patients identified).

C.1 Per-Sequence Mortality Risk for MIMIC and eICU

We show the number of sequences in train, validation and test on both MIMIC and eICU in table C.1. We
use 106 physiological measurements (2 demographics, 10 vitals and 94 labs) for MIMIC, and 17 physiological
measurements (3 demographics, 8 vitals, and 6 labs) for eICU. MIMIC has a slightly higher percentage of positively
labelled sequences (9.5%), compared to eICU (8.2%)

MIMIC-III eICU
Split Sequences % positive outcomes num. measurements Sequences % positive outcomes num. measurements
Train 20682 9.54 106 43642 8.2 17
Valid 6895 9.48 106 14509 8.1 17
Test 6895 9.80 106 14518 8.2 17

Table C.1: Dataset statistics for the per-sequence prediction scenario on MIMIC (left) and eICU (right)
datasets, showing counts of total number of examples (whole sequences) in the train, validation, and test splits, as well as
the fraction of positive examples (mortality events).

C.2 Every-12-Hour Mortality Risk for MIMIC and eICU

In this more realistic scenario for mortality risk prediction, we make predictions every 12 hours throughout each
patient stay in the MIMIC and eICU datasets, with the intended outcome now mortality in the next 24 hours.
Table C.2 provides statistics of the number of segments we have in the dataset (recall that one stay can yield many
segments, such as 0-12 hours, 0-24 hours, 0-36 hours, and so on). Again, we use 106 physiological measurements
(2 demographics, 10 vitals and 94 labs) in the MIMIC dataset, and 17 measurements (3 demographics, 8 vitals,
and 6 lab measurements) in the eICU dataset. The percentage of “positive” outcomes (using positive to denote
the adverse event we wish to detect) drops considerably from the sequence level predictions case because for each
long patient stays that end in an adverse outcome, at most 2 of many segments can be marked positive (all others
will end outside the 24 hour window from the mortality event).

D EXPERIMENTAL DETAILS
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Figure B.6: Sensitivity of precision and recall as we vary the batch size from 512 up to the size of the entire training set.
Rows show the training, validation, and test set performance on the MIMIC-III dataset mortality risk prediction task.
Each dot represents the performance of one run of our sigmoid bound method optimized to convergence from one random
initialization; we plot many runs for each batch-size setting to show the range of possible local optima. The best runs with
batch sizes of 512 and 1024 surpass the best runs at any other tested batch size, as shown by the cluster of orange and
green points that reach 0.45-0.75 precision and 0.18-0.26 recall on the test set, when training with the precision constraint,
α = 0.7. Batch size = -1 indicates the full training set.

D.1 Hyperparameters used

The hyperparameters used for the experiments with our proposed sigmoid bound, hinge bound, and binary cross
entropy are shown in tables D.1, D.2 and D.3
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Figure B.7: Evidence of successful false-alarm-averse training of a model for MIMIC mortality risk prediction. Every 50
epochs, the desired minimum precision α is stair-stepped up, beginning at 0.225, moving at 0.225 increments, and ending
at 0.9. After each step, the model’s empirical precision is quickly improved to approximately satisfy the desired α via
gradient-based learning. Each gray line is one run from a random initialization, the best performing run (maximizing
recall while satisfying our precision goals on training and validation) is highlighted in color.

MIMIC-III Predictions every 12 hours eICU Predictions every 12 hours
Split Segments % positive outcomes num. measurements Segments % positive outcomes num. measurements
Train 140773 2.9 106 322016 2.3 17
Valid 46451 2.9 106 106693 2.3 17
Test 46602 3.0 106 107335 2.3 17

Table C.2: Dataset statistics for the every-12-hour prediction “deployment” scenario on MIMIC AND eICU,
showing counts of total number of examples (segments) in the train, validation, and test splits. As shown, the class
imbalance is much greater than for the earlier per-sequence scenario.

Hyperparameter MIMIC (sequence level) eICU (sequence level) MIMIC (deployment scenario)
weight decay 1000, 10, 0.1, 1e−3,1e−5, 1e−7 1000, 10, 0.1, 1e−3, 1e−5,1e−7 1000, 10, 0.1, 1e−3,1e−5, 1e−7

Lagrange multiplier λ 10000 10000 100, 1000,10000
tolerance/scaling factors γ = 7.0, δ = 0.03, ε = 0.9 γ = 7.0, δ = 0.03, ε = 0.9 γ = 7.0, δ = 0.03, ε = 0.75

batch size 512, 1024, 2048, 4096, 8192, 16384,−1 512, 1024, 2048, 4096, 8192, 16384,−1 512,1024, 2048, 4096, 8192, 16384,−1
Optimizer ADAM ADAM ADAM

learning rate 0.001,0.0025, 0.0001, 0.00025 0.001,0.0025, 0.0001, 0.00025 0.001, 0.0025, 0.0001,0.00025
initialization gains 1.0,1.5, 3.0 1.0,1.5, 3.0 1.0, 1.5, 3.0

Table D.1: Hyperparameters for models trained with the proposed sigmoid bounds with 50 random initializations for each
hyperparameter. Optimal hyperparameters are highlighted in bold.

Hyperparameter MIMIC (sequence level) eICU (sequence level) MIMIC (deployment scenario)
weight decay 1000, 10, 0.1,1e−3, 1e−5, 1e−7 1000, 10, 0.1, 1e−3,1e−5, 1e−7 1000, 10, 0.1, 1e−3,1e−5, 1e−7

Lagrange multiplier λ 10000 10000 100, 1000,10000
tolerance/scaling factors γ = 7.0, δ = 0.03, ε = 0.9 γ = 7.0, δ = 0.03, ε = 0.9 γ = 7.0, δ = 0.03, ε = 0.75

batch size 512, 1024, 2048, 4096, 8192, 16384,−1 512, 1024, 2048, 4096, 8192, 16384,−1 512, 1024, 2048, 4096, 8192, 16384,−1
Optimizer ADAM ADAM ADAM

learning rate 0.001, 0.0025, 0.0001, 0.00025 0.001,0.0025, 0.0001, 0.00025 0.001, 0.0025, 0.0001,0.00025
initialization gains 1.0, 1.5, 3.0 1.0,1.5, 3.0 1.0,1.5, 3.0

Table D.2: Hyperparameters for models trained with Eban et al. (2017)’s hinge bound with 50 random initializations for
each hyperparameter. Optimal hyperparameters are highlighted in bold.
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Hyperparameter MIMIC (sequence level) eICU (sequence level) MIMIC (deployment scenario)
weight decay 1000, 10, 0.1, 1e−3,1e−5, 1e−7 1000, 10, 0.1,1e−3, 1e−5, 1e−7 1000, 10,0.1, 1e−3, 1e−5, 1e−7

batch size 512, 1024, 2048, 4096, 8192, 16384,−1 512,1024, 2048, 4096, 8192, 16384,−1 512, 1024, 2048,4096, 8192, 16384,−1
Optimizer ADAM ADAM ADAM

learning rate 0.001, 0.0025, 0.0001, 0.00025 0.001,0.0025, 0.0001, 0.00025 0.001, 0.0025, 0.0001,0.00025

Table D.3: Hyperparameters for models trained with Binary cross entropy. Optimal hyperparameters are highlighted in
bold.
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