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Abstract

When predicting outcomes for hospitalized patients, two key challenges are that
the time series features are frequently missing and that supervisory labels may be
available for only some sequences. While recent work has offered deep learning
solutions, we consider a far simpler approach using the Hidden Markov model
(HMM). Our probabilistic approach handles missing features via exact marginal-
ization rather than imputation, thereby avoiding predictions that depend on specific
guesses of missing values that do not account for uncertainty. To add effective
supervision, we show that a prediction-constrained (PC) training objective can
deliver high-quality predictions as well as interpretable generative models. When
predicting mortality risk on two large health records datasets, our PC-HMM’s
precision-recall performance is equal or better than the common GRU-D even with
100x fewer parameters. Furthermore, when only a small fraction of sequences
have labels, our PC-HMM approach can beat time-series adaptations of MixMatch,
FixMatch, and other state-of-the-art methods for semi-supervised deep learning.

1 Introduction

Predicting future patient outcomes from observed time series of labs and vitals in critical care settings
has drawn significant recent research interest, catalyzed by the release of open-access datasets (John-
son et al., 2016; Pollard et al., 2018b), benchmark classification tasks (Purushotham et al., 2018;
Harutyunyan et al., 2019; Wang et al., 2020b), and compelling clinical deployments (Sendak et al.,
2020; Hyland et al., 2020). In this work, we consider two particular challenges in such models. First,
labs and vitals are not densely sampled over time, leading to significant feature missingness. Second,
for many tasks obtaining outcome labels to supervise training is prohibitively expensive, leading to
small labeled sets. Both challenges require methods that inherently address uncertainty. We argue that
simple probabilistic models – hidden Markov models (HMMs) (Rabiner & Juang, 1986; Ghahramani,
2001) with a few dozen states – have been under-explored yet provide a natural solution1.

To address the problem of feature missingness, most efforts to date targeted at critical care time series
consider two kinds of approaches: (1) a preprocessing step that imputes missing values via a simple
heuristic like population mean filling or forward filling (Purushotham et al., 2018; Harutyunyan
et al., 2019), followed by a standard classifier, or (2) a deep learning approach that learns to impute
then predict in end-to-end fashion (Che et al., 2018; Yoon et al., 2018b; Cao et al., 2018). Unlike
these approaches, HMMs elegantly handle missingness via exact marginalization, avoiding any
imputation on the way to prediction. Recent work has also explored other deep probabilistic
approaches to missingness that hybridize neural nets with Gaussian processes (Futoma et al., 2017),
latent or stochastic differential equations (Rubanova et al., 2019; De Brouwer et al., 2019), Hawkes
processes (Mei & Eisner, 2017), or encoder-decoder models (Li & Marlin, 2020). Unlike these
approaches, HMMs do not need tens of thousands of parameters to make good predictions.
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To address the small labeled set problem, one promising approach is to use semi-supervised learning
(SSL) (van Engelen & Hoos, 2020), which trains models on the union of a small labeled set and a
large unlabeled set of only features, no labels. While applications of SSL to critical care time series
are limited, there are many tasks for which it would be applicable, such as automating preliminary
diagnosis of disease. One line of work has produced effective SSL for end-to-end deep classifiers
of images (Miyato et al., 2018; Berthelot et al., 2019; Sohn et al., 2020b). Recently, Goschenhofer
et al. (2021) suggest these methods can be effective for multivariate time-series classification as well,
assuming no features are missing. Unlike such deep SSL classifiers, HMMs as generative models can
be easily trained on large unlabeled datasets with arbitrary feature missingness.

Contributions. To make HMMs succeed at clinical time-series prediction with feature missingness
and small labeled sets, we cannot use off-the-shelf unsupervised or supervised approaches to training.
The key methodological insight behind our work is prediction constrained (PC) training (Hope et al.,
2021; Hughes et al., 2017). This optimization objective balances the HMM’s useful generative proper-
ties (handling missingness via marginalization) with the essential need for its learned representations
to enable effective prediction in the clinical task. Previous work by Hope et al. (2021) developed the
PC-HMM but assumed no feature missingness. In this work, we show how PC training for HMMs
offers a principled framework for effective prediction despite missing features and small labeled sets.

In careful experiments pursuing mortality prediction on two large health records datasets with
significant feature missingness, we will show that PC training of HMMs of modest size can match
or outperform much larger deep baselines designed for missingness such as GRU-D (Che et al.,
2018) and BRITS (Cao et al., 2018). In the limited labels regime, we show gains against strong
SSL baselines such as a time-series adaptations of MixMatch (Berthelot et al., 2019) and FixMatch
(Sohn et al., 2020a). We further show how compact HMMs can be interpreted to yield useful clinical
insights (Fig. 3). Our PC-HMM results suggest that simple, easy-to-train probabilistic approaches
deserve consideration in future work. From the environmental costs of training deep models (Strubell
et al., 2019) to avoiding expensive GPUs in bespoke hospital settings, there are many reasons to try
the PC-HMM in clinical time-series applications with missing features or labels.

2 Prediction-Constrained HMMs
Here, we review the HMM generative model, how its resulting belief-state vector representations
can be used for classification, and how prediction-constrained training can be used to balance
discriminative and generative goals in settings with small labeled sets and feature missingness.

HMM generative model. The HMM is defined by a fixed number of states K, parameters governing
transitions (outgoing probability vectors for allK states {πk}Kk=1 and the initial state π0) and emission
parameters {φk}Kk=1. Given (π, φ), the HMM defines a model for a sequence of regularly-spaced
times of size T , where the random variables are the observable D-dimensional features over time
X ∈ RT×D and the hidden discrete states Z = [z1, . . . zT ]. The model p(X,Z|π, φ) decomposes as

p(Z|π) = Cat(z1|π0)
∏T
t=2 Cat(zt|πzt−1

), p(X|Z, φ) =
∏
t,dN (xtd|µzt,d, σ2

zt,d
). (1)

In words, we draw Z from a first-order Markov model, where each zt indicates one of the K states.
Then, we generate each feature xtd given zt via a state-specific emission model that factorizes over
feature dimensions d and times t. Elegantly, this factorization assumption allows exact computation
of the marginal of observed features under any missingness pattern. By applying the sum rule, the
probability of the observed entries of X , denoted XO, given Z is

∏
t,d∈ON (xtd|µzt,d, σ2

zt,d
).

Computing beliefs. We can obtain useful representations from the HMM even though we never
observe Z by computing for each timestep t and state k the posterior belief of state occupancy:
btk(XO) , p(zt = k|XO). Efficient dynamic programming achieves this in O(TK2) runtime.

Predicting outcomes from beliefs. Beliefs represent sufficient statistics for the HMM’s latent state
at each timestep, and thus could be useful representations for classification. We condense all T belief
vectors into an average occupancy vector b̄ = [b̄1, . . . b̄K ], where b̄k = 1

T

∑T
t=1 btk. We can then

build a simple linear classification model: p(y = 1|X) = σ(ηT b̄(X)), where η ∈ RK are the weight
parameters and σ(r) = 1

1+e−r is the logistic sigmoid function for real-valued inputs r.

Prediction constrained training. We wish to fit the parameters of the HMM to a labeled dataset
DL containing many pairs of feature time-series X and class label y as well as an optional unlabeled
dataset DU containing only X for many sequences. Prediction constrained training (Hope et al.,
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Figure 1: Demonstration of proposed PC-HMM on an “easy” binary classifier task where naive imputation
fails. Top left: Visualization of all observed 2D features from 350 sequences (x-axis: feature 1 value, y-axis:
feature 2), colored by labels and collapsed over time. Each sequence (T=8) comes from a Markov model
that generates features from the 4 clusters shown in this 2D feature space. A sequence’s class label depends
on if any observation lands in the black box (yes means y = 1, no means y = 0). Without missingness, the
two classes are clearly separable: compare black box to region below it. Bottom left: We sample features as
missing with 40% probability i.i.d. across timesteps and features. We then apply mean-filling or forward-filling:
each panel shows 2D values after imputation. Either strategy clearly destroys class separability. Our PC-HMM
does not need imputation, and even at 40% missingness can learn to separate the black box from the region
below it with separate Gaussian emission densities (black elipsoids). Right: AUROC vs. percentage of feature
values observed. Across every tested percentage, our PC-HMM with compact state space (only 6 states, 80 total
parameters) can outperform GRU-D or LSTM models even with many more parameters.

2021) aims to maximize generative performance but is unwilling to sacrifice prediction quality (the
two aims are not treated equally). Our PC objective to minimize is

L(π, φ, η) ,
∑

X∈DL∪DU

− log p(XO|π, φ) + λ
∑

X,y∈DL

`(y, σ(ηT b̄(XO;π, φ))) (2)

To emphasize the classification task’s importance, we set tradeoff parameter λ � 1, selecting its
specific value via a validation set. Two special cases are noteworthy: If we set λ = 0, we recover
unsupervised training of the HMM via maximum likelihood. If we set λ = 1 and the loss ` is viewed
as a negative Bernoulli likelihood over labels, we recover a “supervised” HMM that maximizes the
joint likelihood of features and labels. See Hope et al. (2021) for further discussion, especially a
formulation involving a constrained objective that better expresses our priority for prediction. Directly
solving the constrained cost is impractical; thus we pursue the equivalent unconstrained objective.
We optimize the objective via gradient descent. We can efficiently compute gradients because both
terms are efficiently computed via well-known dynamic programming routines amenable to automatic
differentiation. Our open-source code uses the Tensorflow probability toolbox (Dillon et al., 2017).

3 Results and Discussion
Synthetic data demo. We analyze a toy dataset of many sequences generated by an HMM with
K = 4 Gaussian clusters in a D=2 feature space. The 2D features are illustrated in Fig. 1: Each
sequence is labeled y = 1 only if any timestep’s feature xt enters the black square (more details in
App. D.1). Fig. 1 (left) shows that even at 40% missingness (i.i.d. across features and timesteps)
the PC-HMM with K = 6 learns separate states that cover the black box and its complement, and
thus are discriminative. In contrast, both mean-filling and forward-filling imputation destroy the
separability of red and blue classes. In Fig. 1 (right), at all missingness levels the PCHMM delivers
better AUROC than alternatives, including an LSTM and the GRU-D. This dataset is class-balanced,
thus AUROC is an appropriate metric. Later mortality prediction tasks are imbalanced (see Tab. C.1),
so we use area under the precision recall curve (AUPRC) instead. All PC-HMM results, including
“with mean-filled/forward-filled” baselines, assume diagonal covariances.

eICU experiments. To evaluate the PC-HMM on clinical tasks that require SSL with feature
missingness, we predict in-ICU mortality after the first 24 hours on the eICU dataset (Pollard et al.,
2018a) of vitals and labs (81% missing) from deidentified patient-stays at 59 critical care units
throughout the U.S (details in App D.2). We train the model at various percentages p of labels
available for training, approximately preserving the full dataset’s label imbalance (∼ 8.2% mortality,
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Figure 2: AUPRC (higher is better) versus amount of labeled data for in-hospital mortality early warning
classifiers on two large EHR datasets (left: eICU, right: MIMIC-IV). X-axis: Percentage of all training
sequences available with labels (SSL methods treat remaining sequences as unlabeled; other methods discard
them). Y-axis: Area under precision-recall curve (AUPRC, higher is better). SSL methods, including our
PC-HMM as well as MixMatch and FixMatch, learn from both labeled and unlabeled data. GRU-D, BRITS,
and Random Forest use the labeled set only. The PC-HMM matches or beats the other models across all tested
labeled set sizes, despite needing fewer parameters and only 1/10th of the training time as the other models.
App. D provides the train/valid/test splits and App. F gives hyperparameters for reproducibility.
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Figure 3: Interpretation of learned PC-HMM on eICU data. Left: Gaussian emission distributions of states
with highest and lowest ηk (predictor weights). The red and green states represent high risk (high ηk); the blue
state indicates low risk. We show only 3 states and 2 features for clarity. High risk states seem to represent
populations with high blood urea nitrogen (BUN) levels (above 20mg/dL) and high creatinine levels (above
1.45mg/dL), which could indicate kidney problems (Baha et al., 2021). Center: For a patient labeled y = 1 (who
eventually dies), high BUN and high creatinine are observed throughout the stay, and thus beliefs bt give highest
probability to high risk states (green and red). The probability of state 4 (red) peaks initially and towards the end
of the stay because of high heart rate (> 150 bpm) and high blood glucose (> 170 mg/dL). Right: For a patient
labeled y = 0 with normal creatinine and BUN levels, our PC-HMM says the most likely state is low-risk (blue).

details in App Table C.1). Fig. 2 shows each method’s test-set AUPRC (where y = 1 means death) as
label availability p increases. Across all tested percentages p, the PC-HMM is competitive with deep
alternatives, including BRITS and GRU-D as well as deep SSL such as FixMatch and MixMatch.

MIMIC-IV experiments. We further analyzed MIMIC-IV (Johnson et al., 2020), which contains
over 60,000 de-identified ICU patient-stays from one hospital. In an effort to make the task more
challenging, our preprocessing downsampled feature frequencies and death events (67% missingness,
1.2% mortality; details in App D.3 and App Table C.1). Fig. 2 shows again that PC-HMM results are
quite competitive with deep learning baselines with 100x more parameters.

Interpreting learned PC-HMM models. Our PC-HMM framework enables us to interpret cohorts
of vulnerable populations by visualizing the emission distributions for the states that have the highest
predictor coefficients ηk. On eICU data, Fig. 3 shows our PC-HMM identifies states representing
high blood urea nitrogen (BUN) and high creatinine (common indicators of kidney failure (Baha
et al., 2021)) as the most vulnerable to in-ICU mortality. The model transitions to these ’high-risk’
states as soon as high values of creatinine and BUN are observed in a patient who eventually dies.

Outlook. Our PC-HMM is a simple, effective way to address missingness in medical time series.
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A Prediction Tasks

A.1 Sequence classification given multivariate time-series

Our clinical classification tasks assume access to a labeled training dataset DL of feature-time-series,
outcome pairs: {S, y}. Each binary label y ∈ {0, 1} indicates the outcome of interest. For our
applications, y indicates in-ICU mortality; that is, eventual death during the hospital stay. Each
irregular multivariate time series S contains zero or more pairs τd`, vd` of timestamps and values for
each of D features indexed by d (for our applications, these are vital signs or labs).

We can transform S into a regular time series X = [x1, x2, . . . xT ] with time indices t spaced a fixed
duration apart (our applications use 8 hours for MIMIC-IV and 1 hour for eICU), where xt ∈ RD
denotes the feature vector for timestep t. When vitals and labs are not densely sampled, any pattern
of missingness in X is possible. We denote the observed subset of X as XO.

A.2 Semi-supervised sequence classification.

In SSL tasks, we assume we have both a labeled dataset DL as well as a (much larger) unlabeled
dataset DU of time-series features only. Each of these time series may exhibit significant feature
missingness too.

B Baseline Methods

B.1 Deep Semi-supervised learning adapted to Time-Series

Recent progress in improving deep classifiers in the SSL setting has been made under the family of
consistency regularization. Following the unified analysis in Zhu et al. (2022), these approaches train
a deep network fθ with weights θ to minimize a two-term loss:∑

X,y∈a(DL)

`(y, fθ(X)) + λ
∑

X∈a(DU )

`(y′(X), fθ(X)) (3)
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Here, `(·, ·) is a loss function, λ > 0 is a tradeoff hyperparameter, y′(X) is a labeling transformation,
and a(·) represents an (optional) data augmentation transformation. Below, we describe how both
PseudoLabel and MixMatch fit this framework via concrete realizations of y′, a, and `.

In practice, to minimize this loss via minibatch gradient descent we start λ at zero for a few hundred
epochs, and gradually ramp up to a small positive value over a few hundred more epochs. This
ensures that early learning fits well to the labeled set, while letting the unlabeled set also influence
results later on.

MixMatch for time series. MixMatch (Berthelot et al., 2019) is a recent state-of-the-art SSL
algorithm based on two key ideas. First, smooth transitions between classes in feature space are
desirable and achievable via an interpolating augmentation scheme known as MixUp (Zhang et al.,
2017). Second, it is useful to ensure consistency in the predicted label across multiple augmentations
of the same source features. Originally designed for images, it has recently been applied to time
series (Goschenhofer et al., 2021).

We set the labeling function y′(X) to produce temperature-sharpened probability vectors averaged
across multiple augmentations of examples X. The augmentation transformation a(·) uses MixUp to
interpolate between labeled examples (see (Berthelot et al., 2019) for details). As a basic augmentation
procedure applicable to time series, we add Gaussian noise N (0, ε2), following Goschenhofer et al.
(2021), with standard deviation ε set to 0.1 and 1. For the backbone architecture fθ, we use a Gated
Recurrent Unit(GRU) (Cho et al., 2014).

FixMatch for time series. Similar to MixMatch, FixMatch (Sohn et al., 2020a) is another recent
state-of-the-art SSL algorithm based on consistency regularization and pseudo-labeling. Pseudo-
labels for weakly augmented unlabeled examples are only retained if the model produces high-
confidence predictions (we try 0.6 and 0.8 as thresholds for high confidence predictions). Consistency
regularization and the augmentation procedure is the same as MixMatch. Again, we use GRU for the
backbone architecture.

B.2 Random Forest Adapted to time series

To train the random forest, each patient-stay’s multivariate time-series is transformed into a feature
vector as follows. For each raw feature, we apply 7 summarization functions (missing indicator; time
since last non-missing; plus min, max, median, slope, and variance of non-missing values). The
resulting feature vector size for MIMIC-IV is 72 (10 vitals x 7 summary functions + 2 demographics)
and for eICU is 101 (14 labs and vitals x 7 summary functions + 3 demographics). Demographics
for each patient stay are appended only after the summary functions are computed for each of the
time-varying measurements.

C Related Work

C.1 Previous work on PC training for HMMs

Hope et al. (2021) previously introduced the PC-HMM and showed some success in semi-supervised
classification on a variety of domains, including one healthcare application. However, that work did
not handle missing observations probabilistically and required forward-fill imputation to preprocess
ICU time series. Here, we provide a robust solution that does not require imputing missing data, and
compare to more competitive baselines for time-series SSL (such as MixMatch and FixMatch) as
well as deep methods designed for feature missingness such as GRU-D (Che et al., 2018).

C.2 Generator Adversarial Networks (GAN) adapted to mutivariate time-series for
imputation and prediction

Luo et al. (2018), Yoon et al. (2018a) and Gupta et al. (2021) propose methods adapting generative
adversarial nets (GAN) to multivariate time-series with missing observations. These methods rely on
a 2 stage process of imputing missing observations using a generator and discriminator first, and then
using the imputed values for downstream prediction. On the other hand, the prediction constrained
framework of our PC-HMM enables us to maximize the HMM’s generative performance, while
simultaneously enabling effective prediction in the downstream clinical task.
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Dataset % positive labels at various p(% labeled sequences)
p = 1.2% p = 3.7% p = 11.1% p = 33.3% p = 100%

eICU 6.9% 8.0% 8.2% 8.2% 8.2%
MIMIC-IV 0.7% 1.0% 1.1% 1.2% 1.2%

Table C.1: Class imbalance at various percentages of labeled sequences for eICU and MIMIC-IV

seconds/epoch to train each model
Dataset PC-HMM GRU-D MixMatch FixMatch BRITS
MIMIC-IV ∆T = 8 hr 4 41 64 55 48
eICU ∆T = 1 hr 10 70 115 90 75

Table E.1: Computation time (seconds/epoch) required by each model. An epoch is completed when every
example in the training set is covered at-least once. Although computation time increases when measurements
are more frequent, the PC-HMM still requires far lesser time to train due to significantly lesser parameters than
the other models. Note that we perform experiments with ∆T = 8 hr on MIMIC-IV to highlight that PC-HMMs
perform well even in smaller hospital datasets where hourly measurements might be unavailable.

D Data and Pre-processing Details

D.1 Toy Data Generation

The toy data is generated from a Markov model with 4 states (states 0, 1, 2, 3) with the means of the
emission distributions located at (0,−1), (8,−1), (13, 0) and (24, 0). The variance in x is 0.3 and
variance in y is 1 for each of the clusters. Each sequence is initialized at state 0 and either remains
in the current state or transitions to the next adjacent state with equal probability. Once state 2 is
reached, it immediately transitions to state 3 in the next time-step and stays there for the remaining
time-steps with probability 1. We simulate 350 sequences, each of length T = 8 from this model. A
sequence is labeled as 1 if it enters the highlighted black box at any time-point.

D.2 eICU

eICU contains data from 59 critical care units throughout the U.S. For each patient-stay, we extract 3
demographics, 8 vitals, and 6 lab measurements discretized to hourly bins using eICU Extract (Wang
et al., 2020a). Our train/valid/test splits have 43642/14509/14518 patient-stays, with∼ 8.2% resulting
in death and 81% missing entries.

D.3 MIMIC-IV

We use 10 time-varying vital sign features, as well as age and gender features known at admission. We
used the data pipeline developed by Gupta et al. (2022) to extract the chart-events and outcomes. In
an effort to improve eventual transportability, our preprocessing downsampled vital sign frequencies
and death events. Our train/valid./test splits have 42836/15443/15802 patient-stays, with ∼ 1.2%
patient stays resulting in death and 67% missing entries in the hourly time series.

Pre-processing vitals While MIMIC-IV contains vitals that are frequently sampled (<1 hour between
measurements), we chose to downsample the vitals to 1 measurement taken every 8− 16 hours, to
reflect health records in many general hospitals without automated data collection.

Lowering outcome rate Roughly 10% of ICU admissions result in death in MIMIC-IV. We instead
lower the outcome rate to 1.2% (by excluding some ICU deaths) to ensure applicability of our model
to a general hospital population rather than ICU patients only, where the outcome rate might be a lot
lesser.

E Training Time

The training time for each model is shown in Table E.1.
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Model Hyperparameters searched Selection criterion
PC-HMM • learning rate : 0.001, 0.01, 0.1 Best validation AUPRC

• states : 5, 10, 20
• initialization seeds : 20
• l2 penalty : 10 log-spaced values between 10−6 and 1
• λ : 50, 100, 500, 1000, 5000

GRU-D • learning rate : 0.001, 0.01, 0.1 Best validation AUPRC
• hidden units : 32, 64, 128 with early stopping
• hidden layers : 1, 2
• initialization seeds : 20
• l2 penalty : 7 log-spaced values between 10−6 and 100
• batch-size : 128, 256, 512

BRITS • learning rate : 0.001, 0.01, 0.1 Best validation AUPRC
• hidden units : 32, 64, 128 with early stopping
• initialization seeds : 20
• hidden layers : 1, 2
• dropout : 0, 0.1, 0.25
• batch-size : 128, 256, 512
• imputation-weight : 0.3, 0.6
• label weight : 1.0

FixMatch • learning rate : 0.001, 0.01, 0.1 Best validation AUPRC
• hidden units : 16, 32, 64 with early stopping
• initialization seeds : 20
• hidden layers : 1, 2
• batch-size : 128, 256, 512
• l2 penalty : 8 log-spaced values between 10−8 and 10
• pseudo-label thresholds : 0.6, 0.8
• augmentation noise variance : 0.1, 0.01
• unlabeled strength : 50, 75
• Temperature scaling : 0.5
• α(for MixUp): 0.75

MixMatch Same hyperparameter grid as FixMatch Best validation AUPRC
except no psuedo-label thresholds with early stopping

Random Forest • Fraction of features : 0.33, 0.66, 1.0 Best validation AUPRC
• Max leaf nodes : 32, 64, 128
• Min Samples per leaf : 64, 128, 512, 1024
• Estimators : 64

Table F.1: Hyperparameters for all the models

F Hyperparameters

The hyperparameters for all the experiments are shown in Table F.1. For GRU-D, Fixmatch and
Mixmatch, the missing values are forward filled in time and then imputed with the population mean.
For BRITS, the missing values initialized to 0 (as recommended in the paper). Except for the
PC-HMM, the inputs to all the models are dimension-wise z-scored.

G Ablation

The importance of training the PC-HMM with high λ values are shown in Table G.1. Performance is
better at λ > 1.
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AUPRC at various p(% labeled sequences)
Dataset p = 1.2% p = 3.7% p = 11.1% p = 33.3% p = 100%

MIMIC-IV λ = 1 0.031 0.046 0.087 0.097 0.178
λ > 1 0.040 0.072 0.118 0.145 0.242

eICU λ = 1 0.115 0.132 0.143 0.199 0.219
λ > 1 0.127 0.144 0.179 0.216 0.248

Table G.1: Impact of λ on test AUPRC for MIMIC-IV and eICU. Performance is better at λ > 1, highlighting
the significance of higher λ in our prediction constrained objective. The grid of λ values searched are shown in
Table F.1
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