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Abstract
Length-of-stay prediction has been widely studied
as a classification task: will this patient stay 0-3
days, 3-7 days, or more than 7 days? Yet previous
approaches neglect the natural ordering of these
classes: standard multi-class classification treats
classes as unordered, while methods that build
separate binary classifiers for each class strug-
gle to enforce coherent probabilistic predictions
across classes. Instead, we suggest that cumu-
lative link models (CLMs), an ordinal approach
long-known in statistics, are a naturally coherent
approach well-suited to predicting length-of-stay.
We describe how CLMs can be integrated as an
output layer into any training pipeline based on
automatic differentiation.2 We show that CLM
output layers yield competitive predictions over
binary classifier alternatives when paired with ei-
ther neural net or hidden Markov model repre-
sentations of patient vital sign history, all while
requiring fewer parameters. Further experiments
show promise in a semi-supervised setting, where
only some patients have observed outcomes.

1. Introduction
As the world’s population ages and impacts of diseases be-
come more varied, the length of stay (LOS) of a typical
patient in critical care may increase and put a significant
burden on hospitals (Akinosoglou et al., 2023; Daghistani,
2019). There are two main reasons why predicting patient
LOS is a useful task for intensive care units (ICUs) (Al-
mashrafi, 2016; Clarke & Rosen, 2001). First, resource
allocation: Understanding how long patients will stay in the
ICU can help hospitals plan for the necessary staffing, bed
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availability, and medical resources, thereby reducing costs.
Second, patient care planning: Physicians and care teams
can formulate plans for patients predicted to have longer
LOS, such as monitoring to prevent hospital-acquired infec-
tions or other health complications.

In many cases, the utility derived from LOS prediction
comes not from a precise numerical prediction (e.g. distin-
guishing between a stay of 8.5 and 9.1 days), but instead
from knowing a coarse class (e.g. patient will likely stay
more than 7 days). Coarse classes are often sufficient to
determine a stakeholder decision or action. Hence, LOS
prediction is often (though not always) framed as a classifi-
cation problem, usually with multiple possible classes.

As an example of the state-of-the-art, a recent LOS classifier
by Cai et al. (2022) handles multi-class prediction by coor-
dinating separate binary classifiers: one decides if the stay
will exceed 3 days, another if LOS will exceed 7 days, etc.
While these models can answer binary questions in isolation,
overall coherence matters. Separately trained models might
assign higher probability to a >7 day stay than a >3 day
stay, which is logically incoherent since the latter includes
the former. Cai et al. (2022) use an extra loss to try to avoid
such incoherence, but lack formal guarantees.

Instead, we suggest a family of statistical likelihoods de-
signed for ordinal data, known as cumulative link models
or CLMs (Christensen, 2022). In addition to naturally han-
dling the ordered nature of LOS classes in coherent fashion,
CLMs are less complicated: they need fewer parameters
(just one weight vector instead of one per class) and no extra
loss functions to ensure coherence. While CLMs have long
been known in the statistics literature (Aitchison & Silvey,
1957; McCullagh, 1980; Chu & Ghahramani, 2005), this
approach appears under-studied for modern LOS prediction.
A recent survey of LOS prediction models (Bacchi et al.,
2022) identified 21 high-quality studies. Of these, 7 framed
the task as multi-class classification (others pursued regres-
sion or a single binary task). Exactly zero used cumulative
link methods. One barrier might be that the suitability of
CLMs for modern gradient-based learning is not obvious,
especially to non-experts.

We hope in this paper to argue that when classification is
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the right framing for an applied LOS task, CLMs can be
revitalized as a reliable and interpretable model relevant to
hospitals today. We develop a view of CLMs as an output
layer of a neural network amenable to automatic differenti-
ation and release open-source code (link on page 1). This
work can be considered as a “missing manual” for a sepa-
rately developed but insufficiently documented OrderedLo-
gistic layer available in Tensorflow Probability (Tensorflow
Developers, 2023).

Furthermore, CLMs may be incorporated into semi-
supervised frameworks to address prediction tasks where
only some hospitalized patients have associated outcome
labels of interest. We particularly look at integrating CLMs
with prediction-constrained hidden Markov models (PC-
HMMs) (Hope et al., 2021), which our team has previously
demonstrated to be effective for semi-supervised binary clas-
sification of vital sign time series (Rath et al., 2022), but not
ordinal tasks. Although we don’t envision a scenario where
LOS labels are unavailable in practice, we use it to show-
case the utility of PC-HMMs with a CLM output layer for
predicting any clinical outcome with ordinal labels. Future
work could apply such models to disease severity prediction
tasks, where diagnostic labels may be naturally available
only for a subset of all patients.

2. Background and Related Work
In this paper, we pursue LOS prediction as a supervised
learning task. We observe a labeled dataset of (x, y) pairs.
Given observed measurements x for a patient, we build a
feature vector ϕ(x) ∈ RF using any suitable representation
(neural network, etc.). Each class label y ∈ {1, 2, . . . C}
denotes which of C ordered levels of LOS classes that
patient belongs to. Our goal is to learn a probabilistic model
that can predict p(y = c|x) for each class c. Below, we
survey the extensive body of work on LOS predictions,
focusing on how C > 2 class labels are modeled.

Unordered multi-class classifiers. Many approaches pur-
sue multi-class classification without regard to class order-
ing. For example, a softmax construction yields likelihood

p(y = c|x) ∝ exp(wT
cϕ(x)) (1)

This approach requires C different weight vectors wc ∈ RF ,
one for each class. Harutyunyan et al. (2019) and Song et al.
(2018) take this direction for LOS prediction, minimizing
multi-class cross-entropy (an equivalent objective).

Coordinated binary classifiers. Other works try to coordi-
nate multiple binary classifiers to obtain useful predictions
over the C classes, following Li & Lin (2006)’s so-called
extended binary representation. For examples of uncriti-
cal application of multiple binary classifiers to LOS, see
Daghistani (2019). Cai et al. (2022) proposed an output

layer that performs C separate binary classifications, using
a monotonicity constraint penalty to maintain the ordinal
constancy. This implementation of separate binary classi-
fiers is not able to constrain a monotonically decreasing
probability prediction from shorter to longer LOS classes.
That is, it is logically inconsistent to have p(Y > 3|x) less
than p(Y > 7|x). Cao et al. (2020)’s CORAL (consistent
rank logits) has some guarantees, but performs worse in Cai
et al.’s tests.

Previous multi-class remedies. Several works aim to use
multi-class methods but account for class ordering by modi-
fying loss functions to favor nearby classes. Diaz & Marathe
(2019) present SORD, which modifies multi-class to have
soft labels that penalize nearby classes less than others.
SORD uses a linear exponential. DLDL (Gao et al., 2017)
is similar, using a squared exponential for soft labels.

LOS as regression. Other approaches frame the LOS task
as regression. Yet mean absolute errors typically cover
multiple days: 2.2 days in Rocheteau et al. (2021) and 4.6
days in Baek et al. (2018). This limited resolution suggests
coarser classification, like we pursue, can sometimes be a
more suitable goal.

LOS via HMMs. Sotoodeh & Ho (2019) propose a two-
stage process that first trains an unsupervised hidden Markov
model to learn latent representations of the features x only,
then fits a LASSO model on this fixed representation to
make predictions of y. Our PC-HMMs (Hope et al., 2021;
Rath et al., 2022) employ supervision to inform the HMM
directly using labels y and handle missingness via exact
marginalization rather than mean imputation.

3. Methods
3.1. Cumulative Link Models for Ordinal Regression

We wish to model the label y ∈ {1, . . . , C} given an F -
dimensional feature vector ϕ(x), by mapping features to
a scalar location g ∈ (−∞,+∞) on the real line via a
generalized linear model g(x) = ηTϕ(x) with weights η ∈
RF . A deterministic model might then map this location to
a class via a set of ordered thresholds θ0 < θ1 < . . . < θC :

p(y = c|x) =

{
1 if θc−1 < g(x) ≤ θc

0 otherwise
(2)

where we fix boundaries at θ0 = −∞ and θC = +∞. But
the above would be flat almost everywhere as a function of
parameters η, θ, making gradient-based learning difficult.

Cumulative link models assume a smoother likelihood:

p(y=c|x) = H

(
θc − g(x)

σ

)
−H

(
θc−1 − g(x)

σ

)
(3)

where H is a cumulative distribution function (CDF) of a
location-scale univariate distribution H over the reals, and
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σ > 0 is a scale parameter. Because H as a CDF is a
smooth increasing function, according to Eq. (3), increasing
the value of g gradually across any threshold θc leads to
gradual changes in output probability (see Fig. A.2), not the
sudden change across boundaries of Eq. (2).

If H is the Normal CDF, we recover the cumulative pro-
bit model (Aitchison & Silvey, 1957; Chu & Ghahramani,
2005). If H is the Logistic CDF, we recover the cumulative
logit model (McCullagh, 1980), also called “proportional
odds”. See Agresti (2012) for textbook coverage of such
models. Christensen (2022) presents a recent unifying per-
spective, even suggesting other possible distributions for H.
For concreteness, we focus here on Logistic and Normal.

We can interpret our target likelihood in Eq. (3) as the
marginal p(y|x) of an expanded model p(y, δ|x) that
first samples a latent zero-mean noise variable δ ∼
H(loc=0, scale=σ), then determines the class y by thresh-
olding a noise-perturbed location g + δ, finding c ∈
{1, . . . , C} such that θc−1 < g + δ ≤ θc.

3.2. Implementation as a Differentiable Layer

We can view the CLM likelihood in Eq. (3) as an “output
layer” that can be composed on top of any suitable repre-
sentation layer ϕ(x). For example, we could set ϕ(x) to the
features of a recurrent neural network or (as described in the
next section) a hidden Markov model framework that natu-
rally handles both missing features and semi-supervision.

One issue is that our likelihood is over-parameterized. Mul-
tiple combinations of η, θ, and σ values can yield the same
likelihood. For instance, given any valid setting of η, θ, σ,
if we pick any constant k > 0, we can construct another
set of parameters η′ = kη, θ′ = kθ, and σ′ = kσ that
produce the same likelihood value for any input x, because
H(kθc−kg

kσ ) = H( θc−g
σ ). To address this, we recommend

fixing σ = 1, though any fixed value would work.

Another issue relates to the constraints of the threshold
parameters. To be amenable to gradient descent, we need
all parameters to be unconstrained. Given an unconstrained
vector ν ∈ RC−2, we construct thresholds iteratively:

θ1=0, θ2=θ1+r(ν1), . . . , θC−1=θC−2+r(νC−2) (4)

where r is the softplus function that maps a real scalar to
a positive scalar. We can then write our output layer as
CLMLAYER(ϕ(x); η, ν) : RF → ∆C . This layer has two
free parameters: one F -dimensional weight vector η and a
(C − 2)-dimensional threshold-determining vector ν. For
any C > 2, this is always more compact than the earlier
multi-class or separate binary approaches, which require
O(CF ) weights given the same representation ϕ(x). We
observe in our experiments that freezing θ to reasonably
spaced defaults (rather than learning thresholds via a free

parameter ν) is often sufficient for good performance.

3.3. Time-Series Representation Learning

We view LOS prediction as a time-series classification task.
Raw features x = x1, . . . xT can represent a multivariate
time series of vital signs or other health signals (labs, med-
ications, etc.) observed at hourly intervals for T hours. In
real hospitals, each D-dimensional vector xt ∈ RD may
have arbitrary missingness, as some vitals/labs are mea-
sured only occasionally. This calls for representations ϕ(x)
that are well-suited for time-series data with high potential
missingness.

In the case of deep neural networks, we can set ϕ(x) to be
the hidden state vector of a Gated Recurrent Unit given all
T timesteps in x. Missing features are either imputed via a
heuristic like forward-filling (Harutyunyan et al., 2019) or
imputed by an end-to-end-trained missingness-aware super-
vised model like BRITS (Cao et al., 2018).

Alternatively, we consider the prediction-constrained hid-
den Markov model (Hope et al., 2021). Rath et al. (2022)
suggest this is a natural approach for prediction tasks with
health record time series because it handles missingness
elegantly. Given a K-state HMM with known transition and
emission parameters, we can featurize a sequence by setting
ϕ(x) to the average belief vector over all timesteps (see
App. B). ϕ(x) is computable via dynamic programming;
parameter learning is possible via automatic differentiation.

SSL extensions. Another advantage of the PC-HMM is
the ability to naturally learn from a small labeled set and
a large unlabeled set, taking advantage of the HMM’s na-
ture as a generative model to improve representations given
unlabeled data. See Appendix for details.

4. Experimentation
MIMIC-IV and eICU analysis. We study data from
MIMIC-IV (Johnson et al., 2016) to predict length of stay
for 52,354 de-identified ICU patient-stays from one hospi-
tal. We pre-process the dataset to contain 38 time varying
measurements of labs and vitals and 2 demographics (see
App. D for full feature list, LOS distribution, train/valid/test
splits, and missing data information). Building on prior
works (Wang et al., 2020; Gong et al., 2017; Nestor et al.,
2018; Rajkomar, 2018; Zebin et al., 2019), we predict LOS
into 4 ordinal categories (<3 days, 3-7 days, 7-11 days, and
>11 days) using only hourly measurements of the first 24
hours of patient stays. We remove patient stays less than
30 hours to avoid label leakage. To directly compare the
ordinal regression models to binary classification models,
we aggregate the predicted probabilities of each ordinal
category and report performance for predicting binary out-
comes (LOS >3 days, >7 days or >11 days). We focus
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Figure 1: AUPRC (higher is better) versus amount of labeled data for length-of-stay prediction at 3 ordinal labels (> 3, > 7,
and > 11 days). SSL methods (PC-HMM, MixMatch, and FixMatch) learn from both labeled and unlabeled data. GRU-D
(Che et al., 2018) and BRITS (Cao et al., 2018) use the labeled set only. Binary classification models require 3 separate
models (1 for each label), whereas ordinal regression using CLMs require a single model to predict all 3 labels.

on binary outcomes to show that CLMs can compete even
when metrics favor binary not ordinal models. We do plan
to expand our analysis to non-binary performance metrics
in future work. We conduct similar LOS predictions on the
eICU dataset (Pollard et al., 2018) (details in App. E). We
predict LOS for slightly different ordinal categories (<3
days, 3-5 days, 5-7 days, and >7 days) to ensure a similar
class-imbalance as MIMIC-IV (see Tables D.1 and E.1).

First, Table 1 compares separate binary models with CF
weights and our proposed ordinal model with F weights,
using both Normal and Logistic links. We do not expect our
models to outperform these over-parameterized binary alter-
natives. Instead, we aim to show that our ordinal model can
compete with the binary models while being significantly
more efficient and coherent.

Next, Figures 1 and C.1 plots AUPRC as a function of

Table 1: Performance and coherency comparison between
binary classification and ordinal regression results on
MIMIC-IV with PC-HMM using different link functions
(fully supervised). We label a prediction to be incoherent
if the monotonicity constraint is violated (for example if
p(LOS > 3 days) < p(LOS > 11 days))

BINARY ORDINAL REGRESSION VIA
CLASSIFICATION VIA CLM

LINK f LOGIT LOGIT PROBIT

MODELS 3 1 1
PARAMETERS 1338 446 446

INCOHERENCE† 876 (8.3%) 0 (0%) 0 (0%)

TASK AUPRC AUROC AUPRC AUROC AUPRC AUROC

LOS > 3 0.704 0.718 0.703 0.726 0.700 0.725
LOS > 7 0.387 0.766 0.392 0.771 0.389 0.767
LOS > 11 0.230 0.763 0.245 0.786 0.243 0.783
†Refers to portion of stays in test-set predictions that are incoherent.

available labeled data in an SSL setting for MIMIC-IV and
eICU respectively. Two major takeaways are apparent. First,
ordinal regression CLMs (solid lines) outperform binary
classifiers (dashed) regardless of whether HMM or neural
representations are used. Second, compared to all other base-
lines, the ordinal regression PC-HMM not only achieves the
best performance but also does so with the fewest trainable
parameters and lowest training time (see Table F.1).

Interpretability. We illustrate the interpretability of the
PC-HMM in Figure 2. It showcases the learned parameters
of the emissions distributions and plots the average beliefs
of patients in the ‘risk’ state across various length of stay
categories. The ‘risk’ state refer to the states with the highest
predictor weight η (see equation 8). Notably, the PC-HMM
effectively identifies patients at risk by considering high
creatinine and low albumin levels. Additionally, as the true
length of stay of increases, the fraction of patients with
high average beliefs in the risk states also increases. This
demonstrates that the PC-HMM accurately associates longer
stays with abnormal physiological measurements.

5. Conclusion
In order to address the growing need to predict reliable LOS
outcomes from patient data, we have presented a model
that not only outperforms alternatives but also does so with
minimal parameters. By taking advantage of the smooth
likelihood for ordinal data, we show how the cumulative
link framework may be incorporated into any model train-
able with gradient descent. When incorporated into the
PC-HMM, we observe how generative and discriminative
goals are balanced to effectively predict LOS in both fully-
and semi-supervised cases. Unlike other candidates for or-
dinal regression, this established framework maintains a
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Figure 2: Left : Our PC-HMM model reveals five states, representing different risk levels. The red state indicates the ‘risk
state’ associated with high BUN and low albumin and high creatinine. Right: We show the average beliefs, averaged over
time, in the ‘risk state’. Notably, as the LOS increases, the average beliefs in the ‘risk state’ increases.

monotonically increasing probability for subsequent ordinal
classes that are grouped together. This, along with their
loss convexity, make CLMs an ideal candidate to address
the novel problem of predicting hospital stays. Promising
results on patient time-series datasets exhibit the utility of
this model. We plan to explore further use cases such as
characterizing disease severity with medical data.
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Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau,
D., Bougares, F., Schwenk, H., and Bengio, Y. Learn-
ing phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

Christensen, R. H. B. Cumulative link models for ordinal re-
gression with the R package ordinal, 2022. URL https:
//cran.r-project.org/web/packages/
ordinal/vignettes/clm_article.pdf.

Chu, W. and Ghahramani, Z. Gaussian Processes for Ordinal
Regression. Journal of Machine Learning Research, 6
(35), 2005. ISSN 1533-7928. URL http://jmlr.
org/papers/v6/chu05a.html.

Clarke, A. and Rosen, R. Length of stay: How short should
hospital care be? European Journal of Public Health,
11(2):166–170, 06 2001. ISSN 1101-1262. doi: 10.
1093/eurpub/11.2.166. URL https://doi.org/10.
1093/eurpub/11.2.166.

Daghistani, T. A., E. R. S. S. A. A. M. A.-T. A. . A.-M. M. H.
Predictors of in-hospital length of stay among cardiac pa-
tients: A machine learning approach. In Proceedings of
the ACM Conference on Health, Inference, and Learning,
pp. 140–147. International journal of cardiology, 2019.
doi: 10.1016/j.ijcard.2019.01.046. URL https://
doi.org/10.1016/j.ijcard.2019.01.046.

Diaz, R. and Marathe, A. Soft Labels for Ordinal Re-
gression. In 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp.
4733–4742, Long Beach, CA, USA, June 2019. IEEE.
ISBN 978-1-72813-293-8. doi: 10.1109/CVPR.2019.

00487. URL https://ieeexplore.ieee.org/
document/8953836/.

Gao, B.-B., Xing, C., Xie, C.-W., Wu, J., and Geng, X.
Deep Label Distribution Learning with Label Ambiguity.
IEEE Transactions on Image Processing, 26(6):2825–
2838, June 2017. ISSN 1057-7149, 1941-0042. doi:
10.1109/TIP.2017.2689998. URL http://arxiv.
org/abs/1611.01731. tex.ids= gaoDeepLabelDis-
tribution2017a arXiv: 1611.01731 [cs].

Gong, J. J., Naumann, T., Szolovits, P., and Guttag, J. V.
Predicting clinical outcomes across changing electronic
health record systems. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’17, pp. 1497–1505,
New York, NY, USA, 2017. Association for Comput-
ing Machinery. ISBN 9781450348874. doi: 10.1145/
3097983.3098064. URL https://doi.org/10.
1145/3097983.3098064.

Goschenhofer, J., Hvingelby, R., Rügamer, D., Thomas,
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A. Cumulative Link Models
A.1. Illustration of Likelihood

Below we observe the effects of the CLM likelihood by adjusting the choice of distribution H used. We notice that the
Gaussian model (probit link function) provides more flexibility than the logistic model (logit link function) to adjust
confidence of classification near cutpoints. When σ = 1.0, we observe a comparable likelihood function to that using the
logistic distribution.

Figure A.1: Visualization of likelihood function for ordinal regression with 3 classes using the Gaussian distribution at
various σ values to simulate latent function noise

Figure A.2: Visualization of likelihood function for ordinal regression with 3 classes using the logistic distribution to
simulate latent function noise

A.2. Demo: CLMs for Ordinal Prediction from fixed features

Here we discuss the experimentation of our implemented ordinal regression model on non-timeseries data, which can also
be thought of as a time series dataset with a single time step. The ordinal regression model was implemented in Python
using the NumPy, SciPy, and Autograd libraries. First, a class is instantiated for a new model. Then, the model is fit to
the training dataset by invoking a class method, which uses the equations listed in the main body to compute a negative
log-likelihood for the observed data given some randomly chosen initial values for each of the model’s parameters η and θ.
The Autograd library is then used to compute a gradient on the loss function, which is then used with SciPy’s optimize
capabilities to find the values for the parameters that minimize the loss function.

It should be noted that some constraints were placed to ensure stable and logical training occurred. First, we consider that
the ordered constraint of the ordinal regression can only be maintained with the cutpoints θ incrementally increasing. To
avoid the gradient descent algorithm from violating this order, positive padding variables Λ = [Λ2,Λ3, . . .Λr−1] ∈ R+

were used in lieu of cutpoints such that any subsequent cutpoint can be computed from the first and sum of the appropriate
set of padding variables: θj = θ1 +

∑j
ι=2 Λι. Now, rather than η, θ, and σ we have η, θ1, Λ, and σ as our four sets of

variables. The softmax activation function was used to ensure that padding variables are always positive. Second, to avoid
unnecessarily increasing the moduli of the latent feature weight values and the padding variables to achieve diminishing
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Figure A.3: Illustration of decision boundaries found by ordinal regression model on toy data. Colored markers represent
ordinal labels in the following order: blue (y=0), yellow (y=1), green (y=2), red (y=3). Left: Appropriate boundaries
are found for linearly separable data in the second feature dimension. Middle: More uncertainty is added to the decision
boundaries with the overlap of labels. Right: Example where model is not able to learn non-linear curvature of the separating
boundaries given the linear nature of the latent function.

returns in the loss, thereby over-fitting the model to the training data, a complexity penalty was added on the latent function
weights.

The model was tested with various 2-D feature generated datasets. However, in preliminary testing, the optimizer was not
able to compute a valid gradient for the loss function, and NaN values were returned for each of the variables. Upon further
investigation, it was discovered that the optimal z = θc−ηTϕ(x)

σ term(s) needed to compute the CDF for the CLM likelihood
could be achieved with multiple different combinations of θ, η, and σ values, which led us to believe that the model was
over-parameterized learning η, θ1, Λ, and σ. This issue was addressed by constraining σ = 1.

Although the results were promising, efforts to improve the model by performing all operations in log space to avoid
underflow and overflow computational issues failed with the NumPy operation restrictions in the Autograd library. However,
these improvements were addressed by implementing the model with TensorFlow Probability.

A.3. Demo: CLMs for Ordinal Prediction from Time Series

The following toy example is meant to showcase the utility of the ordinal PC-HMM model under predictable conditions.
When applied to a time-series toy data example, the model is able to identify the four states that determine the correct ordinal
class (see Figure A.4).

Figure A.4: Illustration of decision boundaries found by ordinal regression model on toy data. The PC-HMM correctly
identifies the 4 clusters that are critical for prediction.

Once the PC-HMM learns the appropriate state sequences as indicated by the state beliefs, any observed sequence that has a
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high probability of passing through the appropriate state is likely to have its respective ordinal class predicted correctly.

B. Prediction Constrained Hidden Markov Models
A typical generative HMM assumes that N observed sequences of data X are generated from N sequences of K possible
hidden discrete states Z, where each observed sequence xn and corresponding latent state sequence zn has Tn time steps:
xn = [xn1, xn2 . . . xnTn ], zn = [zn1, zn2 . . . znTn ]. The state sequences zn of an HMM are drawn from a Markov process,
where each sequential state znt has some probability of being observed conditioned on the previous state znt−1 (first order
assumption), and the observed data for each time step in a sequence xnt is drawn from a distribution conditioned only on
the respective state assignment. We assume Gaussian distributions are used to emit the observed data with a state-specific
mean and covariance.

p(xnt|znt = k, ϵk = {µk,Σk}) = N (xnt|µk,Σk) (5)

The HMM model can be comprehensively described as the joint probability of observing some data sequence and hidden
state sequence:

p(xn, zn|π, ϵ) = p(zn|π)p(xn|zn, ϵ) = Cat(zn1|π0)

Tn∏
t=2

Cat(znt|πznt−1)︸ ︷︷ ︸
p(zn|π)

Tn∏
t=1

N (xnt|µznt ,Σznt)︸ ︷︷ ︸
p(xn|zn,ϵ)

(6)

where π0 is the initial state distribution, and π = {πk}Kk=0 describes the outgoing transition probabilities from state k.

The posterior marginal probabilities (state beliefs) is the likelihood that a particular set of latent states generated the observed
data. State beliefs may be averaged across timestamps and used as features to classify the data. In the binary classification
case, the beliefs are multiplied by some regression coefficients η and the logistic function is used as the appropriate link
function:

b̄(xn, π, ϵ) ≜
1

Tn

Tn∑
t=1

bt(xn, π, ϵ) (7)

ŷn ≜ ŷ(xn, π, ϵ, η) = σ(η⊤b̄(xn, π, ϵ)) (8)

The forward-backward algorithm can be used to compute the posterior marginal probabilities, or beliefs, for the latent states
zn, given the observed data xn (Rabiner, 1989). We can denote these probabilities by

btk(xn, π, ϵ) ≜ p(znt = k|xn, π, ϵ) (9)

Note that each of these beliefs are a deterministic function of xn with computational cost O(TnK
2).

The probabilities btk(xn, π, ϵ) take into account the full sequence xn, including future timesteps xnt′ , where t′ > t. In
some applications, predictions must be made only on the data up until time t. These beliefs, defined as

b→tk (xn, π, ϵ) ≜ p(znt = k|xn1, . . . , xnt, π, ϵ) (10)

are computed by the forward pass of belief propagation.

Hope et al. (2021) proposed a framework for training hidden Markov models while balancing generative and discriminative
goals. The framework uses an HMM model to predict labels from beliefs while under a prediction constraint. Under this
model, the generative component and the discriminative component, defined by separate parameters, are learnt jointly
using a gradient descent algorithm. Previously, Rath et al. (2022) demonstrated how the PC-HMM model can be used for
effective binary classification, despite feature and label missingness usually prevalent and persistent in clinical data. They
reported precision-recall performance competitive with complicated models, and with many fewer parameters, for predicting
mortality. This previous work exhibited how the PC-HMM’s generative properties can be used to handle feature missingness
and small labeled sets while maintaining effective prediction. Although it was argued that any prediction constraint may be
used, so long as its loss function is differentiable, the previous work by Rath et al. (2022) only explored binary classification.
Here, we extended the application of the PC-HMM to ordinal regression, specifically for predicting hospital length of stay
(LOS).
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C. eICU Length of Stay Prediction Results
We pursue the task of length of stay prediction for stays > 3, > 5 and > 7 days on eICU with a much larger cohort of
admissions (200,000). Again the PC-HMM and GRU-D with the ordinal regression loss outperform the respective models
trained for binary classification
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Figure C.1: AUPRC (higher is better) versus amount of labeled data for length of stay prediction at 3 ordinal labels (> 3,
> 5, and > 7 days) on e-ICU. X-axis: Percentage of all training sequences available with labels (SSL methods treat
remaining sequences as unlabeled; other methods discard them). Y-axis: Area under precision-recall curve (AUPRC, higher
is better). SSL methods, including our PC-HMM as well as MixMatch and FixMatch, learn from both labeled and unlabeled
data. GRU-D, BRITS, and Random Forest use the labeled set only. The PC-HMM matches or beats the other models across
all tested labeled set sizes, despite needing fewer parameters and only 1/10th of the training time as the other models.
Additionally the models trained with the ordinal loss objective outperform the models trained with binary cross entropy.
Note that for binary classification, 3 separate models are trained for each ordinal label, whereas a single cumulative link
model is trained for ordinal regression to predict all 3 ordinal labels.
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D. MIMIC-IV Dataset Description
The MIMIC-IV data set utilized in this work contains the first 24 hours of 38 time-varying measurements and 3 demographics.
We only include stays lasting more than 30 hours to ensure no label leakage (Wang et al., 2020). The length of stay distribution
is shown below.

Table D.1: MIMIC-IV Dataset Split and Statistics

Dataset Split Stays Patients Fraction of Stays
LOS ≥ 3 days LOS ≥ 7 days LOS ≥ 11 days

MIMIC-IV
Train 33,506 27,084 0.46 0.16 0.08
Valid 8,377 7,821 0.46 0.16 0.08
Test 10,471 9,673 0.47 0.17 0.08
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Figure D.2: Distribution of LOS in ICU obtained from MIMIC-IV
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Table D.3: MIMIC-IV features

10% median 90% missing rate

Heart Rate 63.00 83.00 109.00 0.00
Respiratory Rate 13.00 18.00 26.00 0.00
O2 saturation pulseoxymetry 93.00 97.00 100.00 0.00
Non Invasive Blood Pressure systolic 93.00 116.00 148.00 0.08
Non Invasive Blood Pressure diastolic 47.00 63.00 85.00 0.08
Temperature Fahrenheit 36.22 36.83 37.61 0.07
Height (cm) 155.00 170.00 183.00 0.98
Respiratory Rate (Total) 14.00 18.00 27.00 0.62
Potassium (serum) 3.40 4.10 5.10 0.04
Sodium (serum) 132.00 138.00 144.00 0.04
Chloride (serum) 96.00 104.00 112.00 0.04
Hematocrit (serum) 23.60 30.30 38.90 0.05
Hemoglobin 7.70 10.10 13.10 0.05
Creatinine (serum) 0.60 1.00 3.10 0.04
Glucose (serum) 88.00 126.00 222.00 0.05
Magnesium 1.60 2.00 2.60 0.08
Phosphorous 2.20 3.50 5.50 0.11
Platelet Count 79.00 175.00 322.00 0.05
Glucose (whole blood) 97.00 136.00 200.00 0.77
Daily Weight 58.40 82.30 114.00 0.66
Absolute Neutrophil Count 4.55 9.30 20.54 1.00
Prothrombin time 11.60 14.20 23.60 0.21
Fibrinogen 127.00 216.00 462.00 0.80
PH (Arterial) 7.25 7.37 7.46 0.60
PH (Venous) 7.23 7.36 7.45 0.78
HCO3 (serum) 17.00 23.00 28.00 0.05
Arterial O2 pressure 75.00 132.00 334.00 0.60
Arterial CO2 Pressure 31.00 40.00 52.00 0.60
Lactic Acid 1.00 2.00 5.60 0.47
Albumin 2.20 3.10 3.90 0.75
Calcium non-ionized 7.30 8.30 9.30 0.12
C Reactive Protein (CRP) 2.00 40.70 213.40 0.98
ALT 11.00 33.00 395.00 0.59
AST 17.00 48.00 568.00 0.59
Direct Bilirubin 0.30 1.60 7.80 0.97
Total Bilirubin 0.30 0.80 5.10 0.60
Troponin-T 0.01 0.07 1.60 0.71
Venous CO2 Pressure 30.00 42.00 63.00 0.82
Age 40.00 65.00 84.00 0.00
is gender male 0.00 1.00 1.00 0.00
is gender unknown 0.00 0.00 0.00 0.00

E. eICU Dataset Description
The eICU data set utilized in this work contains the first 24 hours of 35 time-varying measurements and 3 demographics. We
only include stays lasting more than 30 hours to ensure no label leakage (Wang et al., 2020). The length of stay distribution
is shown below.

13



Semi-supervised Ordinal Regression via Cumulative Link Models for Predicting In-Hospital Length-of-Stay

Table E.1: eICU Dataset Split and Statistics

Dataset Split Stays Fraction of Stays
LOS ≥ 3 days LOS ≥ 5 days LOS ≥ 7 days

eICU
Train 71,602 0.43 0.22 0.13
Valid 17,901 0.43 0.21 0.13
Test 22,376 0.43 0.22 0.13

Table E.3: eICU features

Lab Test 10% Median 90% Missing Rate

ALT (SGPT) 12.00 29.00 178.00 0.56
AST (SGOT) 14.00 35.00 268.00 0.55
BUN 9.00 21.00 59.00 0.07
Hct 23.40 31.30 40.90 0.08
Hgb 7.70 10.30 13.60 0.09
MCH 26.70 30.00 32.70 0.16
PT 11.60 15.60 27.00 0.61
RBC 2.63 3.57 4.62 0.10
WBC x 1000 5.70 11.00 20.90 0.09
albumin 1.90 2.80 3.70 0.52
anion gap 6.00 11.00 18.00 0.26
calcium 7.20 8.20 9.20 0.09
chloride 96.00 105.00 113.00 0.07
creatinine 0.59 1.08 3.38 0.06
glucose 90.00 132.00 235.00 0.07
platelets x 1000 87.00 181.00 313.00 0.10
potassium 3.30 4.00 5.00 0.05
sodium 132.00 139.00 145.00 0.06
total bilirubin 0.30 0.70 2.50 0.56
total protein 4.60 5.80 7.00 0.55
uric acid 2.70 6.10 11.90 0.98
magnesium 1.50 1.90 2.50 0.42
bedside glucose 91.00 137.00 239.00 0.37
lactate 0.80 1.90 5.70 0.71
HCO3 16.20 22.90 31.00 0.62
pH 7.23 7.36 7.47 0.60
FiO2 21.00 45.00 100.00 0.58
Total CO2 17.20 24.00 35.30 0.85
fibrinogen 144.00 277.00 517.00 0.93
CRP 1.07 11.50 543.00 0.98
phosphate 1.90 3.30 5.50 0.62
direct bilirubin 0.10 0.30 2.40 0.91
troponin - T 0.02 0.14 1.96 0.96
age 41.00 65.00 82.00 0.03
gender is male 0.00 0.00 1.00 0.00
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Figure E.2: Distribution of LOS in ICU obtained from eICU

F. Model Training Time

seconds/epoch to train each model
Dataset PC-HMM GRU-D MixMatch FixMatch BRITS
MIMIC-IV 41 features 9 43 70 55 48
eICU 35 features 13 68 109 85 68

Table F.1: Computation time (seconds/epoch) required by each model. An epoch is completed when every example in
the training set is covered at-least once. Although computation time increases when measurements are more frequent, the
PC-HMM still requires far lesser time to train due to significantly lesser parameters than the other models.

G. Baseline Semi-supervised learning adapted to Time-Series
Recent progress in improving deep classifiers in the SSL setting has been made under the family of consistency regularization.
Following the unified analysis in Zhu et al. (2022), these approaches train a deep network fθ with weights θ to minimize a
two-term loss:

∑
X,y∈a(DL)

ℓ(y, fθ(X)) + λ
∑

X∈a(DU )

ℓ(y′(X), fθ(X)) (11)

Here, ℓ(·, ·) is a loss function, λ > 0 is a tradeoff hyperparameter, y′(X) is a labeling transformation, and a(·) represents an
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(optional) data augmentation transformation. Below, we describe how both PseudoLabel and MixMatch fit this framework
via concrete realizations of y′, a, and ℓ.

In practice, to minimize this loss via minibatch gradient descent we start λ at zero for a few hundred epochs, and gradually
ramp up to a small positive value over a few hundred more epochs. This ensures that early learning fits well to the labeled
set, while letting the unlabeled set also influence results later on.

MixMatch for time series. MixMatch (Berthelot et al., 2019) is a recent state-of-the-art SSL algorithm based on two
key ideas. First, smooth transitions between classes in feature space are desirable and achievable via an interpolating
augmentation scheme known as MixUp (Zhang et al., 2017). Second, it is useful to ensure consistency in the predicted label
across multiple augmentations of the same source features. Originally designed for images, it has recently been applied to
time series (Goschenhofer et al., 2021).

We set the labeling function y′(X) to produce temperature-sharpened probability vectors averaged across multiple augmen-
tations of examples X. The augmentation transformation a(·) uses MixUp to interpolate between labeled examples (see
(Berthelot et al., 2019) for details). As a basic augmentation procedure applicable to time series, we add Gaussian noise
N (0, ϵ2), following Goschenhofer et al. (2021), with standard deviation ϵ set to 0.1 and 1. For the backbone architecture fθ,
we use a Gated Recurrent Unit(GRU) (Cho et al., 2014).

FixMatch for time series. Similar to MixMatch, FixMatch (Sohn et al., 2020) is another recent state-of-the-art SSL
algorithm based on consistency regularization and pseudo-labeling. Pseudo-labels for weakly augmented unlabeled
examples are only retained if the model produces high-confidence predictions (we try 0.6 and 0.8 as thresholds for high
confidence predictions). Consistency regularization and the augmentation procedure is the same as MixMatch. Again, we
use GRU for the backbone architecture.
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