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Abstract

We provide two key pieces of supplementary material: (1) high-resolution result images shown
in the main paper, and (2) mathematical and algorithmic details of our variational algorithms.
Image files are inside the images/ folder included in supplement.zip. We encourage the readers to
check those results back and forth on an image viewer to see the difference between methods. The
remainder of this document provides further details for our variational posterior inference method.
Our open-source Python code is available online at github.com/bnpy/hdp-grid-image-restoration.
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A DP Grid: Variational Inference Details

As in the main text, our goal is to best explain many observed noisy images ym with the DP Grid
model. Specifically, we wish to estimate the posterior distribution p(β,Λ, xm, wm,Ψ

patch
m |ym). In each

subsection below, we look at a subset of random variables and derive: (1) the chosen approximate
posterior family, (2) useful expectations for computing terms of the variational objective L, and (3)
the coordinate ascent update equations that will improve L.

A.1 Approximate Posterior for Global Random Variables

The DP mixture model has two global random variables which are shared across all images: the
per-cluster stick-breaking frequencies βk and the per-cluster precision matrix Λk. Our chosen
approximate posterior factors for these quantities have standard exponential-family forms, where the
associated free parameters are marked with hats:

q(Λk) = Wish
(
ν̂k, Ŵk

)
q(βk) = Beta

(
ρ̂kω̂k, (1− ρ̂k)ω̂k

)
The Wishart approximate posterior q(Λk) has a positive scalar ν̂k ∈ R+ and a G×G positive definite
matrix Ŵk.

The Beta posterior q(βk) has a positive scalar parameter ρk ∈ [0, 1] which defines the mean of βk,
and another positive scalar ωk ∈ R+ which controls the variance.

A.1.1 Useful Expectations

Expectations for cluster-specific precision matrices. Under the chosen q(Λk), we have the
expectations:

Eq[Λk] = ν̂kŴ
−1
k (1)

Eq[log |Λk|] =
G∑
g=1

ψ
( ν̂k + 1− g

2

)
+G log 2− log |Ŵk|

in which ψ stands for the derivative of the logarithm of gamma function, often called the digamma
function.

Expectations for cluster frequencies. Under our chosen family for q(β) we have closed-form
expressions for key expectations of the cluster frequencies π0k for active clusters k ≤ K:

Eq[π0k] = ρ̂k

k−1∏
`=1

(1− ρ̂`) (2)

Eq[log π0k] =

k−1∑
`=1

E[log(1− β`)] + E[log βk]
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The remaining mass above some cluster index K is also known:

Eq[π0>K ] =

K∏
`=1

(1− ρ̂`) (3)

Closed-form expectations of direct functions of βk:

Eq[log βk] = ψ(ρ̂kω̂k)− ψ(ω̂k) (4)
Eq[log(1− βk)] = ψ((1− ρ̂k)ω̂k)− ψ(ω̂k)

A.1.2 Coordinate Ascent Updates

Following Hughes and Sudderth (2013), we only explicitly compute posterior statistics for the K
“active” clusters that have been assigned to at least one patch. All clusters with index > K are by
definition independent of the data. Thus, their posterior factors are simply equal to their priors
(Hughes and Sudderth, 2013) and need not be instantiated.

Update for q(Λk). The Wishart posterior for the corpus-wide cluster precision matrix Λk enjoys
standard exponential family additive updates where the relevant sufficient statistics are Nk, an
aggregated usage count, and Sk, an aggregated outer-product. These statistics are averaged across
all G grid alignments:

ν̂k = ν +
1

G
Nk, Nk =

M∑
m=1

G∑
g=1

Nmg∑
n=1

r̂mgnk (5)

Ŵk = W +
1

G
Sk, Sk =

M∑
m=1

G∑
g=1

Nmg∑
n=1

Eq
[
1k(zmgn)vmgnv

T
mgn

]

Update for q(βk). For the DP-mixture, the optimal update to each cluster’s stick-breaking weight
q(βk) also has a standard closed form, as described in Hughes and Sudderth (2013).

ρ̂kω̂k ← Nk + 1, (1− ρ̂k)ω̂k ← N>k + γ (6)

Here, the count N>k represents the aggregated statistic for all clusters with index larger than k:
N>k =

∑K
`=k+1Nk

A.2 Approximate Posterior for Patch Random Variables

Recall that from the main paper, we have the follow approximate posterior family for the patch-specific
random variables: u, v, z.

q(zmgn|wm = g) = Cat
(
r̂mgn1, ..., r̂mgnK

)
q(umgn|wm = g) = Norm

(
ûmgn, φ̂

u
mgn

)
q(vmgn|wm = g,zmgn = k) = Norm

(
v̂mgnk, φ̂

v
mgnk

)
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We interpret the responsibility parameter r̂mgnk as the posterior probability of assigning the n-th
patch in grid g to the k-th cluster. The vector r̂mgn must have K positive entries that sum to one.
The posterior for scalar DC offset u has a simple Gaussian distribution with free mean and variance
parameters. Similarly, the posterior for vector v has a Gaussian form with mean and covariance
matrix.

Note that each of these factors conditions on the value of the grid indicator wm for the current
image m. This conditioning provides flexible posterior structures and elegant update equations not
possible with naive mean-field methods.

A.2.1 Useful Expectations

Under our structured approximate posterior, we have the following expectations:

Eq[1k(zmgn)vmgn] = r̂mgnkv̂mgnk (7)

Eq[vmgn] =
K∑
k=1

r̂mgnkv̂mgnk (8)

Similarly, we have the following outer-product expectations:

Eq[1k(zgmn)vmgnv
T
mgn] = r̂mgnk(v̂mgnkv̂

T
mgnk + φ̂vmgnk) (9)

Eq[vmgnvTmgn] =
K∑
k=1

r̂mgnk(v̂mgnkv̂
T
mgnk + φ̂vmgnk) (10)

A.2.2 Coordinate Ascent Updates

Updating q(z|w). Within image m, we update the n−th patch inside the g−th grid by computing
a scalar positive weight for each active cluster k = 1, 2, . . .K:

r̂mgnk ∝ exp
(
Eq[log π0k] +

1

2

(
Eq[log |Λk|] + log |φ̂vmgnk|+ F Tmgnφ̂

v
mgnkFmgn

))
(11)

in which Fmgn , 1
δ2
CTmgn(Pmgnx̂m− ûmgn). The entire vector r̂mgn is then normalized to sum to one.

Each entry k defines the posterior probability (or responsibility) that cluster k explains this patch.
The required expectations have known closed-form due to our exponential family assumptions. We
provide closed-form expressions for Eq[π0k] and Eq[log |Λk|] in Eq. (2) and Eq. (1).

Updating q(v|w, z). We update the approximate posterior over the vector vmgn ∈ RG by computing
its mean and covariance via closed-form updates:

v̂mgnk =
1

δ2
φ̂vmgnkC

T
mgn(Pmgnx̂m − ûmgn), φ̂vmgnk =

( 1

δ2
CTmgnCmgn + Eq[Λk]

)−1
(12)

A closed-form expression for Eq[Λk] is given in Eq. (1). For most patches that are fully-observed,
matrix Cmgn would just reduce to an identity matrix and the updates simplify accordingly.
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Updating q(u|w). Similarly, the update for the mean and variance of the scalar offset umgn is:

ûmgn = φ̂umgn

( r
s2

+
1

δ2
1T
(
Pmgnx̂m − CmgnEq[vmgn]

))
, φ̂umgn = 1

/( 1

s2
+
Dmgn

δ2

)
(13)

The required expectation E[vmgn] is defined in Eq. (8). Dmgn ∈ (0, G] is the number of observable
pixels of patch n in the g-th grid of image m.

A.3 Approximate Posterior for Image Random Variable

As in the main paper, the posterior q(wm) for alignment indicator wm is assumed uniform. Thus we
only need to focus on the approximate posterior q(xm) for the clean image xm:

q(xm) = Norm(xm|x̂m, φ̂xm) (14)

A.3.1 Coordinate Ascent Updates

The mean and covariance of posterior for the whole-image vector xm both have closed-form updates:

x̂m = φ̂m

(ym
σ2

+
hm
δ2

)
, φ̂xm =

δ2σ2

δ2 + σ2
I (15)

The covariance update conveniently yields a diagonal matrix. The mean depends on the average
image vector across all patches in all grids, denoted hm:

hm ,
1

G

G∑
g=1

Nmg∑
n=1

P Tmgn(CmgnEq[vmgn] + ûmgn). (16)

Recall that the expectation Eq[vmgn] is defined in Eq. (8)

B HDP Grid: Variational Inference Details

While the DP Grid model above assumes the same cluster probability vector π0 for each image m,
our HDP Grid model allows image-specific cluster probabilities πm to be learned from data. These
are tied together via the hierarchical Dirichlet process prior.

B.1 Approximate Posterior for HDP Random Variables

Our revised approximate posterior family Q now includes the HDP factors:

q(β) =
∞∏
k=1

Beta (βk|ρ̂kω̂k, (1− ρ̂k)ω̂k) , (17)

q([πm1 . . . πmK πm>K ]) = Dir(θ̂m1, . . . , θ̂mK , θ̂m>K)
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Here, the image-specific free parameter θ̂m is a vector of length K + 1, where the last dimension
represents all inactive clusters. Its optimal update is:

θ̂mk =


αEq[π0k] + 1

G

G∑
g=1

Nmg∑
n=1

r̂mgnk, k ≤ K

αEq[π0>K ], k = K + 1

(18)

in which Eq[π0k] follows from Eq. (2) and Eq[π0>K ] from Eq. (3). The update for ρ̂k and ω̂k has no
closed form but can be executed easily via gradient descent. Details can be found in Appendix D of
the supplement of Hughes et al. (2015), which is available online.1

Other factors remain unchanged from the DP Grid model. Their respective updates remain unchanged
as well, except that we substitute Eq[log πmk] for Eq[log π0k] in the patch-cluster responsibility update
in Eq. (11):

r̂mgnk ∝ exp
(
Eq[log πmk] +

1

2

(
Eq[log |Λk|] + log |φ̂vmgnk|+ F Tmgnφ̂

v
mgnkFmgn

))
(19)

Sparse responsibilities. In practice, we optimize downstream computations by enforcing r̂mgn
to be a one-hot vector rather than a dense vector of K entries. To do this, after computing the
dense r̂mgn vector as before, we place probability mass one on its maximum entry k′. The advantage
of restricting to sparse r̂ vectors is that we need only compute and store v̂mgnk′ rather than all
k ∈ {1, ...,K}. Using sparse posteriors significantly reduces memory and computational costs but
does not noticeably impact inference quality.

B.2 HDP Denoising Algorithm

In Alg. 1, we describe the procedure used to perform our HDP denoising algorithm, which combines
K ′ novel clusters from the noisy test image with the original K clusters learned from a training
dataset of clean images. The annealing schedule used to decay δ over 8 iterations from the initial
value of the noise-level σ to a final value of 0.5/255 is equivalent to the schedule used in the public
EPLL code.

1www.michaelchughes.com/papers/HughesKimSudderth_AISTATS_2015_supplement.pdf
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Algorithm 1 HDP denoising algorithm for single image given pretrained external model.
Input:

ym : noisy image
σ : standard deviation of noise
K ′ : number of internal clusters to learn from provided image

Output:
x̂m : restored image

1: function DenoiseImage(ym)
2: Extend q(β) and q(Λ) to contain K +K ′ clusters
3: Initialize E[q(πm)] as uniform, E[q(xm)] the noisy image, and E[q(umgn)] the patch mean
4: for iteration t := 1→ 8 do
5: if t = 1 then
6: δ := σ
7: else
8: δ := max

{
σ

2t/2
, 0.5
255

}
9: end if

10: for grid g := 1→ G do
11: for patch n := 1→ Nmg do
12: Update q(zmgn) using Eq. (19)
13: Update q(vmgn) using Eq. (12)
14: Update q(umgn) using Eq. (13)
15: end for
16: end for
17: Update q(xm) using Eq. (15)
18: Update q(πm) using Eq. (18)
19: Delete unused image-specific clusters
20: end for
21: return x̂m
22: end function
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