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Abstract

Bayesian nonparametric hidden Markov models are typically learned via fixed
truncations of the infinite state space or local Monte Carlo proposals that make
small changes to the state space. We develop an inference algorithm for the sticky
hierarchical Dirichlet process hidden Markov model that scales to big datasets by
processing a few sequences at a time yet allows rapid adaptation of the state space
cardinality. Unlike previous point-estimate methods, our novel variational bound
penalizes redundant or irrelevant states and thus enables optimization of the state
space. Our birth proposals use observed data statistics to create useful new states
that escape local optima. Merge and delete proposals remove ineffective states to
yield simpler models with more affordable future computations. Experiments on
speaker diarization, motion capture, and epigenetic chromatin datasets discover
models that are more compact, more interpretable, and better aligned to ground
truth segmentations than competitors. We have released an open-source Python
implementation which can parallelize local inference steps across sequences.

1 Introduction

The hidden Markov model (HMM) [1, 2] is widely used to segment sequential data into interpretable
discrete states. Human activity streams might use walking or dancing states, while DNA transcrip-
tion might be understood via promotor or repressor states [3]. The hierarchical Dirichlet process
HMM (HDP-HMM) [4, 5, 6] provides an elegant Bayesian nonparametric framework for reasoning
about possible data segmentations with different numbers of states.

Existing inference algorithms for HMMs and HDP-HMMs have numerous shortcomings: they can-
not efficiently learn from large datasets, do not effectively explore segmentations with varying num-
bers of states, and are often trapped at local optima near their initialization. Stochastic optimization
methods [7, 8] are particularly vulnerable to these last two issues, since they cannot change the num-
ber of states instantiated during execution. The importance of removing irrelevant states has been
long recognized [9]. Samplers that add or remove states via split and merge moves have been de-
veloped for HDP topic models [10, 11] and beta process HMMs [12]. However, these Monte Carlo
proposals use the entire dataset and require all sequences to fit in memory, limiting scalability.

We propose an HDP-HMM learning algorithm that reliably transforms an uninformative, single-state
initialization into an accurate yet compact set of states. Generalizing previous work on memoized
variational inference for DP mixture models [13] and HDP topic models [14], we derive a variational
bound for the HDP-HMM that accounts for sticky state persistence and can be used for effective
Bayesian model selection. Our algorithm uses birth proposal moves to create new states and merge
and delete moves to remove states with poor predictive power. State space adaptations are validated
via a global variational bound, but by caching sufficient statistics our memoized algorithm efficiently
processes subsets of sequences at each step. Extensive experiments demonstrate the reliability and
scalability of our approach, which can be reproduced via Python code we have released online1.

1
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Figure 1: Illustration of our new birth/merge/delete variational algorithm as it learns to segment motion capture
sequences into common exercise types (Sec. 5). Each panel shows segmentations of the same 6 sequences,
with time on the horizontal axis. Starting from just one state (A), birth moves at the first sequence create useful
states. Local updates to each sequence in turn can use existing states or birth new ones (B). After all sequences
are updated once, we perform merge moves to clean up and lap is complete (C). After another complete lap of
birth updates at each sequence followed by merges and deletes, the segmentation is further refined (D). After
many laps, our final segmentation (E) aligns well to labels from a human annotator (F), with some true states
aligning to multiple learned states that capture subject-specific variability in exercises.

2 Hierarchical Dirichlet Process Hidden Markov Models

We wish to jointly modelN sequences, where sequence n has data xn = [xn1, xn2, . . . , xnTn
] and

observation xnt is a vector representing interval or timestep t. For example, xnt ∈ R
D could be the

spectrogram for an instant of audio, or human limb positions during a 100ms interval.

The HDP-HMM explains this data by assigning each observation xnt to a single hidden state znt.
The chosen state comes from a countably infinite set of options k ∈ {1, 2, . . .}, generated via
Markovian dynamics with initial state distributions π0 and transition distributions {πk}

∞
k=1:

p(zn1 = k) = π0k, p(znt = ℓ | zn,t−1 = k) = πkℓ. (1)

We draw data xnt given assigned state znt = k from an exponential family likelihood F :

F : log p(xnt | φk) = sF (xdn)
Tφk + cF (φk), H : log p(φk | τ̄ ) = φTk τ̄ + cH(τ̄ ). (2)

The natural parameter φk for each state has conjugate prior H . Cumulant functions cF , cH ensure
these distributions are normalized. The chosen exponential family is defined by its sufficient statis-
tics sF . Our experiments consider Bernoulli, Gaussian, and auto-regressive Gaussian likelihoods.

Hierarchies of Dirichlet processes. Under the HDP-HMM prior and posterior, the number of
states is unbounded; it is possible that every observation comes from a unique state. The hierarchical
Dirichlet process (HDP) [5] encourages sharing states over time via a latent root probability vector
β over the infinite set of states (see Fig. 2). The stick-breaking representation of the prior on β first

draws independent variables uk ∼ Beta(1, γ) for each state k, and then sets βk = uk
∏k−1

ℓ=1 (1−uℓ).
We interpret uk as the conditional probability of choosing state k among states {k, k+1, k+2, . . .}.

In expectation, the K most common states are first in stick-breaking order. We represent their
probabilities via the vector [β1 β2 . . . βK β>K ], where β>K =

∑∞
k=K+1 βk. Given this (K + 1)-

dimensional probability vector β, the HDP-HMM generates transition distributions πk for each state
k from a Dirichlet with mean equal to β and variance governed by concentration parameter α > 0:

[πk1 . . . πkK πk>K ] ∼ Dir(αβ1, αβ2, . . . , αβ>K). (3)

We draw starting probability vector π0 from a similar prior with much smaller variance, π0 ∼
Dir(α0β) with α0 ≫ α, because few starting states are observed.

Sticky self-transition bias. In many applications, we expect each segment to persist for many
timesteps. The “sticky” parameterization of [4, 6] favors self-transition by placing extra prior mass
on the transition probability πkk. In particular, [πk1 . . . πk>K ] ∼ Dir(αβ1, . . . αβk + κ, . . . αβ>K)
where κ > 0 controls the degree of self-transition bias. Choosing κ ≈ 100 leads to long segment
lengths, while avoiding the computational cost of semi-Markov alternatives [7].
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Figure 2: Left: Graphical representation of the HDP hidden Markov model. Variational parameters are shown
in red. Center: Our surrogate bound for the sticky Dirichlet cumulant function cD (Eq. 9) as a function of α,
computed with κ = 100 and uniform β with K = 20 active states. Right: Surrogate bound vs. K, with fixed
κ = 100, α = 0.5. This bound remains tight when our state adaptation moves insert or remove states.

3 Memoized and Stochastic Variational Inference

After observing data x, our inferential goal is posterior knowledge of top-level conditional probabil-
ities u, HMM parameters π, φ, and assignments z. We refer to u, π, φ as global parameters because
they generalize to new data sequences. In contrast, the states zn are local to a specific sequence xn.

3.1 A Factorized Variational Lower Bound

We seek a distribution q over the unobserved variables that is close to the true posterior, but lies in the

simpler factorized family q(·) , q(u)q(φ)q(π)q(z). Each factor has exponential family form with
free parameters denoted by hats, and our inference algorithms update these parameters to minimize
the Kullback-Leibler (KL) divergence KL(q || p). Our chosen factorization for q is similar to [7],
but includes a substantially more accurate approximation to q(u) as detailed in Sec. 3.2.

Factor q(z). For each sequence n, we use an independent factor q(zn) with Markovian structure:

q(zn) ,

[

K
∏

k=1

r̂
δk(zn1)
n1k

]

T−1
∏

t=1

K
∏

k=1

K
∏

ℓ=1

[

ŝntkℓ

r̂ntk

]δk(znt)δℓ(zn,t+1)

(4)

Free parameter vector ŝnt defines the joint assignment probabilities ŝntkℓ , q(zn,t+1 = ℓ, znt = k),
so theK2 non-negative entries of ŝnt sum to one. The parameter r̂nt defines the marginal probability

r̂ntk = q(znt = k), and equals r̂ntk =
∑K

ℓ=1 ŝntkℓ. We can find the expected count of transitions

from state k to ℓ across all sequences via the sufficient statistic Mkℓ(ŝ) ,
∑N

n=1

∑Tn−1
t=1 ŝntkℓ.

The truncation levelK limits the total number of states to which data is assigned. Under our approx-
imate posterior, only q(zn) is constrained by this choice; no global factors are truncated. Indeed, if
data is only assigned to the firstK states, the conditional independence properties of the HDP-HMM
imply that {φk, uk | k > K} are independent of the data. Their optimal variational posteriors thus
match the prior, and need not be explicitly computed or stored [15, 16]. Simple variational algo-
rithms treat K as a fixed constant [7], but Sec. 4 develops novel algorithms that fit K to data.

Factor q(π). For the starting state (k = 0) and each state k ∈ 1, 2, . . ., we define q(πk) as a

Dirichlet distribution: q(πk) , Dir(θ̂k1, . . . , θ̂kK , θ̂k>K). Free parameter θ̂k is a vector of K + 1
positive numbers, with one entry for each of the K active states and a final entry for the aggregate

mass of all other states. The expected log transition probability between states k and ℓ, Pkℓ(θ̂) ,

Eq[log πkℓ] = ψ(θ̂kℓ)− ψ(
∑K+1

m=1 θ̂km), is a key sufficient statistic.

Factor q(φ). Emission parameter φk for state k has factor q(φk) , H(τ̂k) conjugate to the likeli-
hood F . The supplement provides details for Bernoulli, Gaussian, and auto-regressive F .

We score the approximation q via an objective functionL that assigns a scalar value (higher is better)
to each possible input of free parameters, data x, and hyperparameters γ, α, κ, τ̄ :

L(·) , Eq [log p(x, z, π, u, φ)− log q(z, π, u, φ)] = Ldata + Lentropy + Lhdp-local + Lhdp-global. (5)
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This function provides a lower bound on the marginal evidence: log p(x|γ, α, κ, τ̄) ≥ L. Improving
this bound is equivalent to minimizing KL(q || p). Its four component terms are defined as follows:

Ldata(x, r̂, τ̂ ) , Eq

[

log p(x | z, φ) + log p(φ)
q(φ)

]

,

Lhdp-local(ŝ, θ̂, ρ̂, ω̂) , Eq

[

log p(z | π) + log p(π)
q(π)

]

,

Lentropy(ŝ) , −Eq [log q(z)] ,

Lhdp-global(ρ̂, ω̂) , Eq

[

log p(u)
q(u)

]

.
(6)

Detailed analytic expansions for each term are available in the supplement.

3.2 Tractable Posterior Inference for Global State Probabilities

Previous variational methods for the HDP-HMM [7], and for HDP topic models [16] and HDP
grammars [17], used a zero-variance point estimate for the top-level state probabilities β. While
this approximation simplifies inference, the variational objective no longer bounds the marginal evi-
dence. Such pseudo-bounds are unsuitable for model selection and can favor models with redundant
states that do not explain any data, but nevertheless increase computational and storage costs [14].

Because we seek to learn compact and interpretable models, and automatically adapt the truncation
level K to each dataset, we instead place a proper beta distribution on uk, k ∈ 1, 2, . . .K:

q(uk) , Beta(ρ̂kω̂k, (1−ρ̂k)ω̂k), where ρ̂k ∈ (0, 1), ω̂k > 0. (7)

Here ρ̂k = Eq(u)[uk], Eq(u)[βk] = ρ̂kE[β>k−1], and Eq(u)[β>k] =
∏k

ℓ=1(1−ρ̂ℓ). The scalar ω̂k

controls the variance, where the zero-variance point estimate is recovered as ω̂k → ∞.

The beta factorization in Eq. (7) complicates evaluation of the marginal likelihood bound in Eq. (6):

Lhdp-local(ŝ, θ̂, ρ̂, ω̂) = Eq(u)[cD(α0β)] +
∑K

k=1 Eq(u)[cD(αβ + κδk)]

−
∑K

k=0 cD(θ̂k) +
∑K

k=0

∑K+1
ℓ=1 (Mkℓ(ŝ) + αkEq(u)[βℓ] + κδk(ℓ)− θ̂kℓ)Pkℓ(θ̂). (8)

The Dirichlet cumulant function cD mapsK+1 positive parameters to a log-normalization constant.
For a non-sticky HDP-HMM where κ = 0, previous work [14] established the following bound:

cD(αβ) , log Γ(α)−
∑K+1

k=1 log Γ(αβk) ≥ K logα+
∑K+1

ℓ=1 log βℓ. (9)

Direct evaluation of Eq(u)[cD(αβ)] is problematic because the expectations of log-gamma functions

have no closed form, but the lower bound has a simple expectation given beta distributed q(uk).

Developing a similar bound for sticky models with κ > 0 requires a novel contribution. To begin,
in the supplement we establish the following bound for any κ > 0, α > 0:

cD(αβ + κδk) ≥ K logα− log(α+ κ) + log(αβk + κ) +
∑K+1

ℓ=1 ℓ 6=k log(βℓ). (10)

To handle the intractable term Eq(u)[log(αβk + κ)], we leverage the concavity of the logarithm:

log(αβk + κ) ≥ βk log(α+ κ) + (1− βk) log κ. (11)

Combining Eqs. (10) and (11) and taking expectations, we can evaluate a lower bound on Eq. (8) in
closed form, and thereby efficiently optimize its parameters. As illustrated in Fig. 2, this rigorous
lower bound on the marginal evidence log p(x) is quite accurate for practical hyperparameters.

3.3 Batch and Stochastic Variational Inference

Most variational inference algorithms maximize L via coordinate ascent optimization, where the
best value of each parameter is found given fixed values for other variational factors. For the HDP-
HMM this leads to the following updates, which when iterated converge to some local maximum.

Local update to q(zn). The assignments for each sequence zn can be updated independently via
dynamic programming [18]. The forward-backward algorithm takes as input a Tn × K matrix of
log-likelihoods Eq[log p(xn | φk)] given the current τ̂ , and log transition probabilities Pjk given the

current θ̂. It outputs the optimal marginal state probabilities ŝn, r̂n under objective L. This step has
cost O(TnK

2) for sequence n, and we can process multiple sequences in parallel for efficiency.

Global update to q(φ). Conjugate priors lead to simple closed-form updates τ̂k = τ̄ + Sk, where

sufficient statistic Sk summarizes the data assigned to state k: Sk ,
∑N

n=1

∑Tn

t=1 r̂ntksF (xnt).

Global update to q(π). For each state k ∈ {0, 1, 2 . . .K}, the positive vector θ̂k defining the

optimal Dirichlet posterior on transition probabilities from state k is θ̂kℓ =Mkℓ(ŝ)+αβℓ +κδk(ℓ).
Statistic Mkℓ(ŝ) counts the expected number of transitions from state k to ℓ across all sequences.

4



Global update to q(u). Due to non-conjugacy, our surrogate objective L has no closed-form up-
date to q(u). Instead, we employ numerical optimization to update vectors ρ̂, ω̂ simultaneously:

argmax
ρ̂,ω̂

Lhdp-local(ρ̂, ω̂, θ̂, ŝ) + Lhdp-global(ρ̂, ω̂) subject to ω̂k > 0, ρ̂k ∈ (0, 1) for k = 1, 2 . . .K.

Details are in the supplement. The update to q(u) requires expectations under q(π), and vice versa,
so it can be useful to iteratively optimize q(π) and q(u) several times given fixed local statistics.

To handle large datasets, we can adapt these updates to perform stochastic variational inference
(SVI) [19]. Stochastic algorithms perform local updates on random subsets of sequences (batches),
and then perturb global parameters by following a noisy estimate of the natural gradient, which
has a simple closed form. SVI has previously been applied to non-sticky HDP-HMMs with point-
estimated β [7], and can be easily adapted to our more principled objective. One drawback of SVI
is the requirement of a learning rate schedule, which must typically be tuned to each dataset.

3.4 Memoized Variational Inference

We now outline a memoized algorithm [13] for our sticky HDP-HMM variational objective. Before
execution, each sequence is randomly assigned to one of B batches. The algorithm repeatedly visits
batches one at a time in random order; we call each full pass through the complete set ofB batches a
lap. At each visit to batch b, we perform a local step for all sequences n in batch b and then a global
step. With B = 1 batches, memoized inference reduces to the standard full-dataset algorithm, while
with largerB we have more affordable local steps and faster overall convergence. With just one lap,
memoized inference is equivalent to the synchronous version of streaming variational inference,
presented in Alg. 3 of Broderick et al. [20]. We focus on regimes where dozens of laps are feasible,
which we demonstrate dramatically improves performance.

Affordable, but exact, batch optimization of L is possible by exploiting the additivity of statistics
M , S. For each statistic we track a batch-specific quantity M b, and a whole-dataset summary

M ,
∑B

b=1M
b. After a local step at batch b yields ŝb, r̂b, we updateM b(ŝb) and Sb(r̂b), increment

each whole-dataset statistic by adding the new batch summary and subtracting the summary stored
in memory from the previous visit, and store (or memoize) the new statistics for future iterations.
This update cycle makes M and S consistent with the most recent assignments for all sequences.
Memoization does require O(BK2) more storage than SVI. However, this cost does not scale with
the number of sequencesN or length T . Sparsity in transition countsM may make storage cheaper.

At any point during memoized execution, we can evaluate L exactly for all data seen thus far. This

is possible because nearly all terms in Eq. (6) are functions of only global parameters ρ̂, ω̂, θ̂, τ̂
and sufficient statistics M,S. The one exception that requires local values ŝ, r̂ is the entropy term
Lentropy. To compute it, we track a (K + 1)×K matrix Hb at each batch b:

Hb
0ℓ = −

∑

n r̂n1ℓ log r̂n1ℓ, Hb
kℓ = −

∑

n

∑Tn−1
t=1 ŝntkℓ log

ŝntkℓ

r̂ntk
, (12)

where the sums aggregate sequences n that belong to batch b. Each entry ofHb is non-negative, and

given the whole-dataset entropy matrix H =
∑B

b=1H
b, we have Lentropy =

∑K
k=0

∑K
ℓ=1Hkℓ.

4 State Space Adaptation via Birth, Merge, and Delete Proposals

Reliable nonparametric inference algorithms must quickly identify and create missing states. Split-
merge samplers for HDP topic models [10, 11] are limited because proposals can only split an
existing state into two new states, require expensive traversal of all data points to evaluate an ac-
ceptance ratio, and often have low acceptance rates [12]. Some variational methods for HDP topic
models also dynamically create new topics [16, 21], but do not guarantee improvement of the global
objective and can be unstable. We instead interleave stochastic birth proposals with delete and merge
proposals, and use memoization to efficiently verify proposals via the exact full-dataset objective.

Birth proposals. Birth moves can create many new states at once while maintaining the monotonic
increase of the whole-dataset objective, L. Each proposal happens within the local step by trying
to improve q(zn) for a single sequence n. Given current assignments ŝn, r̂n with truncation K , the
move proposes new assignments ŝ′n, r̂

′
n that include the K existing states and some new states with

index k > K . If L improves under the proposal, we accept and use the expanded set of states for
all remaining updates in the current lap. To compute L, we require candidate global parameters

ρ̂′, ω̂′, θ̂′, τ̂ ′. These are found via a global step from candidate summaries M ′, S′, which combine
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Figure 3: Toy data experiments (Sec. 5). Top left: Data sequences contain 2D points from 8 well-separated
Gaussians with sticky transitions. Top center: Trace plots from initialization with 50 redundant states. Our
state-adaptation algorithms (red/purple) reach ideal K = 8 states and zero Hamming distance regardless of
whether a sticky (solid) or non-sticky (dashed) model is used. Competitors converge slower, especially in the
non-sticky case because non-adaptive methods are more sensitive to hyperparameters. Bottom: Segmentations
of 4 sequences by SVI, the Gibbs sampler, and our method under the non-sticky model (κ = 0). Top half shows
true state assignments; bottom shows aligned estimated states. Competitors are polluted by extra states (black).

the new batch statisticsM ′
b, S

′
b and memoized statistics of other batchesM ′

\b, S
′
\b expanded by zeros

for states k > K . See the supplement for details on handling multiple sequences within a batch.

The proposal for expanding ŝ′, r̂′ with new states can flexibly take any form, from very naı̈ve to very
data-driven. For data with “sticky” state persistence, we recommend randomly choosing one interval
[t, t+ δ] of the current sequence to reassign when creating ŝ′, r̂′, leaving other timesteps fixed. We
split this interval into two contiguous blocks (one may be empty), each completely assigned to a
new state. In the supplement, we detail a linear-time search that finds the cut point that maximizes
the objective Ldata. Other proposals such as sub-cluster splits [11] could be easily incorporated in
our variational algorithm, but we find this simple interval-based proposal to be fast and effective.

Merge proposals. Merge proposals try to find a less redundant but equally expressive model. Each
proposal takes a pair of existing states i < j and constructs a candidate model where data from state
j is reassigned to state i. Conceptually this reassignment gives a new value ŝ′, but instead statistics

M ′, S′ can be directly computed and used in a global update for candidate parameters τ̂ ′, ρ̂′, θ̂′.

S′
i = Si + Sj , M ′

:i =M:i +M:j, M ′
i: =Mi: +Mj:, M ′

ii =Mii +Mjj +Mji +Mij .

While most terms in L are linear functions of our cached sufficient statistics, the entropy Lentropy

is not. Thus for each candidate merge pair (i, j), we use O(K) storage and computation to track
column H ′

:i and row H ′
i: of the corresponding merged entropy matrix H ′. Because all terms in the

H ′ matrix of Eq. (12) are non-negative, we can lower-boundLentropy by summing a subset ofH ′. As
detailed in the supplement, this allows us to rigorously bound the objective L′ for accepting multiple
merges of distinct state pairs. Because many entries of H ′ are near-zero, this bound is very tight,
and in practice enables us to scalably merge many redundant state pairs in each lap through the data.

To identify candidate merge pairs i, j, we examine all pairs of states and keep those that satisfy
L′

data+L′
hdp-local+L′

hdp-global > Ldata+Lhdp-local+Lhdp-global. Because entropy must decrease after any

merge (L′
entropy < Lentropy), this test is guaranteed to find all possibly useful merges. It is much more

efficient than the heuristic correlation score used in prior work on HDP topic models [14].

Deletes. Our proposal to delete a rarely-used state j begins by dropping row j and column j from
M to create M ′, and dropping Sj from S to create S′. Using a target dataset of sequences with

non-trivial mass on state j, x′ = {xn :
∑Tn

t=1 r̂ntj > 0.01}, we run global and local parameter
updates to reassign observations from former state j in a data-driven way. Rather than verifying on
only the target dataset as in [14], we accept or reject the delete proposal via the whole-dataset bound
L. To control computation, we only propose deleting states used in 10 or fewer sequences.
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Figure 4: Segmentation of human epigenome: 15 million observations across 173 sequences (Sec. 5). Left:
Adaptive runs started at 1 state grow to 70 states within one lap and reach better L scores than 100-state non-
adaptive methods. Each run takes several days. Right: Wallclock times and speedup factors for a parallelized
local step on 1/3 of this dataset. 64 workers complete a local step with K = 50 states in under one minute.

5 Experiments

We compare our proposed birth-merge-delete memoized algorithm to memoized with delete and
merge moves only, and without any moves. We further run a blocked Gibbs sampler [6] that was
previously shown to mix faster than slice samplers [22], and our own implementation of SVI for
objective L. These baselines maintain a fixed number of states K , though some states may have
usage fall to zero. We start all fixed-K methods (including the sampler) from matched initializations.
See the supplement for futher discussion and all details needed to reproduce these experiments.

Toy data. In Fig. 3, we study 32 toy data sequences generated from 8 Gaussian states with sticky
transitions [8]. From an abundant initialization with 50 states, the sampler and non-adaptive varia-
tional methods require hundreds of laps to remove redundant states, especially under a non-sticky
model (κ = 0). In contrast, our adaptive methods reach the ideal of zero Hamming distance within
a few dozen laps regardless of stickiness, suggesting less sensitivity to hyperparameters.

Speaker diarization. We study 21 unrelated audio recordings of meetings with an unknown num-
ber of speakers from the NIST 2007 speaker diarization challenge [23]. The sticky HDP-HMM
previously achieved state-of-the-art diarization performance [6] using a sampler that required hours
of computation. We ran methods from 10 matched initializations with 25 states and κ = 100, com-
puting Hamming distance on non-speech segments as in the standard DER metric. Fig. 5 shows that
within minutes, our algorithms consistently find segmentations better aligned to true speaker labels.

Labelled N = 6 motion capture. Fox et al. [12] introduced a 6 sequence dataset with labels for
12 exercise types, illustrated in Fig. 1. Each sequence has 12 joint angles (wrist, knee, etc.) captured
at 0.1 second intervals. Fig. 6 shows that non-adaptive methods struggle even when initialized
abundantly with 30 (dashed lines) or 60 (solid) states, while our adaptive methods reach better
values of the objective L and cleaner many-to-one alignment to true exercises.

LargeN = 124 motion capture. Next, we apply scalable methods to the 124 sequence dataset of
[12]. We lack ground truth here, but Fig. 7 shows deletes and merges making consistent reductions
from abundant initializations and births growing from K = 1. Fig. 7 also shows estimated segmen-
tations for 10 representative sequences, along with skeleton illustrations for the 10 most-used states
in this subset. These segmentations align well with held-out text descriptions.

Chromatin segmentation. Finally, we study segmenting the human genome by the appearance
patterns of regulatory proteins [24]. We observe 41 binary signals from [3] at 200bp intervals
throughout a white blood cell line (CD4T). Each binary value indicates the presence or absence
of an acetylation or methylation that controls gene expression. We divide the whole epigenome into
173 sequences (one per batch) with total size T = 15.4 million. Fig. 4 shows our method can grow
from 1 state to 70 states and compete favorably with non-adaptive competitors. We also demonstrate
that our parallelized local step leads to big 25x speedups in processing such large datasets.

6 Conclusion

Our new variational algorithms adapt HMM state spaces to find clean segmentations driven by
Bayesian model selection. Relative to prior work [14], our contributions include a new bound for the
sticky HDP-HMM, births with guaranteed improvement, local step parallelization, and better merge
selection rules. Our multiprocessing-based Python code is targeted at genome-scale applications.
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Figure 5: Method comparison on speaker diarization from common K = 25 initializations (Sec. 5). Left: Scat-
terplot of final Hamming distance for our adaptive method and the sampler. Across 21 meetings (each with 10
initializations shown as individual dots) our method finds segmentations closer to ground truth. Right: Traces
of objective L and Hamming distance for meetings representative of good, average, and poor performance.
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Figure 6: Comparison on 6 motion capture streams (Sec. 5). Top: Our adaptive methods reach better L values
and lower distance from true exercise labels. Bottom: Segmentations from the best runs of birth/merge/delete
(left), only deletes and merges from 30 initial states (middle), and the sampler (right). Each sequence shows
true labels (top half) and estimates (bottom half) colored by the true state with highest overlap (many-to-one).
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Figure 7: Study of 124 motion capture sequences (Sec. 5). Top Left: Objective L and state count K as more data
is seen. Solid lines have 200 initial states; dashed 100. Top Right: Final segmentation of 10 select sequences
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shown in color, the rest with gray. Bottom: Time-lapse skeletons assigned to each highlighted state.
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