
Supplementary Material:

Reliable and Scalable Variational Inference for the

Hierarchical Dirichlet Process

Michael C. Hughes mhughes@cs.brown.edu

Dae Il Kim daeil@cs.brown.edu

Erik B. Sudderth sudderth@cs.brown.edu

Department of Computer Science

Brown University

Providence, RI 02912-1910, USA

Abstract

This document contains supplementary details for the AISTATS 2015 paper “Reliable and scalable
variational inference for the Hierarchical Dirichlet process” (Hughes et al., 2015). First, we show
more detailed traceplots from the topic model experiments. Next, we provide expanded closed-
form expressions for various ELBO terms in Sec. B, and a detailed derivation of our surrogate
bound in Sec. C. Next, we describe how to optimize the free parameters ρ̂, ω̂ of our variational
objective in Sec. D. We discuss the local step algorithm in Sec E. Finally, Sec. F provides more
formal details on the delete move.

A. Topic Model Experiments

Fig. 1 shows an expanded version of the main paper’s Fig. 6 here, including another row of trace
plots of active topic counts over passing through training data for different methods.

All methods are allowed initializations from K = 100 and K = 200 for NIPS, Wikipedia, and
Science datasets. For New York Times articles, we show those same initializations for a subset of
algorithms scalable enough to run on 1.8M documents.

We do not show trace plots of active topics K for NYTimes, because we find these do not change
much at all. With 1.8M documents, it is easy for a few hundred topics to be used without redundancy
or junk to remove.

B. Data-generation ELBO computation.

In the main paper, we define the variational objective L(·) as

L(·) , Ldata(·) +Hz(·) + LHDP (·) + Lu(·). (1)

In this section we provide complete expressions for calculating Ldata. First, we give required
equations for the Dirichlet-Multinomial case used in topic models. Second, we give a general closed-
form for any choice of exponential family data-generation.

Later in Sec. (D) we define Lu(·) and LHDP (·).

1

NIPS: D=1392 Wiki: D=7961 Science: D=13077 NYTimes: D=1.8M

0 100 200 300 400

num pass thru data

−8.4

−8.2

−8.0

−7.8

−7.6

−7.4
h
e
ld

o
u
t

lo
g
 l
ik

0 100 200 300 400

num pass thru data

−8.0

−7.9

−7.8

−7.7

−7.6

h
e
ld

o
u
t

lo
g
 l
ik

0 100 200 300 400

num pass thru data

−7.6

−7.5

−7.4

−7.3

−7.2

−7.1

h
e
ld

o
u
t

lo
g
 l
ik

0 2 4 6 8 10

num pass thru data

−7.7

−7.6

h
e
ld

o
u
t

lo
g
 l
ik

50 100 150 200 250 300

num topics K

−8.4

−8.2

−8.0

−7.8

−7.6

−7.4

h
e
ld

o
u
t

lo
g
 l
ik

50 100 150 200 250 300

num topics K

−8.0

−7.9

−7.8

−7.7

−7.6

h
e
ld

o
u
t

lo
g
 l
ik

100 150 200 250 300

num topics K

−7.6

−7.5

−7.4

−7.3

−7.2

−7.1

h
e
ld

o
u
t

lo
g
 l
ik Gibbs

SOsm rand

crfSOfix rand

SOfix rand

MOfix rand

MOdm rand

MOdm anchor

MOdm fromGibbs

0 100 200 300 400

num pass thru data

50

100

150

200

250

300

n
u
m

 t
o
p
ic

s
 K

0 100 200 300 400

num pass thru data

50

100

150

200

250

300

n
u
m

 t
o
p
ic

s
 K

0 100 200 300 400

num pass thru data

100

150

200

250

300

n
u
m

 t
o
p
ic

s
 K

Figure 1: Topic modeling algorithm comparisons from main paper on NIPS, Wikipedia, Science, and
NYTimes datasets (one dataset per column). Color indicates the algorithm used. Each algorithm given
several runs at different values of the initial number of topics. K = 100 runs shown with dotted lines,
K = 200 runs shown with solid lines. Top Row: Trace plots of heldout likelihood as more training
data is seen. Middle Row: Traces of predictive power and number of active topics K during training.
Solid dot indicates final result of each algorithm, trailing line indicates algorithm’s trajectory from
initialization. Bottom Row: Trace plots of the number of active topics K as more training data is seen.

B.1 Data generation term : Dirichlet-Multinomial

When H is Dirichlet over W words with parameter vector τ̄ of size W , we have

Ldata(·) , Eq[log p(x|z, φ) + log p(φ|τ̄)
q(φ|τ̂) (2)

=

K
∑

k=1

cD(τ̄)− cD(τ̂k)

+

K
∑

k=1

W
∑

w=1

(Skw + τ̄w − τ̂kw)E[log φkw]

where cD(·) is the log cumulant function of the Dirichlet defined in the main paper and Skw counts
the total number of words of type w assigned to topic k.

B.2 Data generation term : General EF Form.

Here, we provide a more formal treatment than the main paper of a general-purpose data-generation
model, which subsumes Dirichlet-Multinomial, Beta-Bernoulli, Wishart-Normal, and many other
well-known conjugate data generation models.

2

0 1 2 3
alpha

−8

−6

−4

−2

0

c_D exact
c_D surrogate

0 1 2 3
alpha

0.0

0.5

1.0

er
ro

r

beta_1=0.50
beta_1=0.25
beta_1=0.05
beta_1=0.01

Figure 2: Left: Comparison of the exact value of cD(αβ) (Eq. (7), solid black) alongside our tight
surrogate bound (Eq. (13), dashed red), across a range of possible α > 0. We fix K = 1 and set
β = [β1, 1− β1] = [0.5, 0.5]. Right: The error in our surrogate bound across various values of α and β1

for the K = 1 case. The function cD(αβ1, α(1− β1)) is symmetric for β1 around 0.5, so we need only
consider the range β1 ∈ [0, 0.5] instead of [0, 1].

First, each data item xdn comes from an exponential family (EF) density family F with natural
parameter φk and log cumulant cF (·).

F : log p(xn|φk) = s(xn)
Tφk + cF (φk) (3)

In turn, φk comes from exponential family H that is conjugate to F with natural parameters
τ̄ , C̄, and cumulant function cH(·).

H : log p(φk|τ̄ , C̄) = τ̄Tφk + C̄T cF (φk) + cH(τ̄ , C̄) (4)

Here, C̄ is interpreted as a scalar pseudo count, while τ̄ is a vector that acts like a pseudo-sufficient
statistic.

Next, We assume the variational factor q(φk) also comes from H , with free parameters Ĉk, τ̂k.
Under this assumption, we can evaluate the expectations that define Ldata in closed form. First,
define compact sufficient statistics Sk, Nk as follows

Nk(r̂) =
∑D

d=1

∑Nd

n=1 r̂dnk (5)

Sk(r̂) =
∑D

d=1

∑Nd

n=1 xdnr̂dnk

Then, we have

Ldata(·) , Eq[log p(x|z, φ) + log p(φ|τ̄)
q(φ|τ̂) (6)

=

K
∑

k=1

cH(τ̄ , C̄)− cH(τ̂k, Ĉk)

+ (Sk + τ̄ − τ̂k)
T
Eq(φk)[φk]

+ (Nk + C̄ − Ĉk)Eq(φk)[cF (φk)]

C. Surrogate Bound

Here, we provide formal details for a surrogate bound on the intractable expectation of the cumulant
of the Dirichlet function. Plots describing our bound and its associated error can be found in Fig. 2.

3

C.1 Bound for the Dirichlet cumulant function

As in the main paper, we define the cumulant function cD of the Dirichlet distribution as

cD(αβ) = cD(αβ1, αβ2, . . . αβK , αβK+1) , log Γ(α)−

K+1
∑

k=1

log Γ(αβk) (7)

where α > 0 is a positive scalar, and β = {βk}
K+1
k=1 is a vector of positive numbers that sum-to-one.

The log-Gamma function log Γ(·) has the following definition1 for scalar input x > 0:

− log Γ(x) = log x+ γx+

∞
∑

n=1

(

log
(

1 +
x

n

)

−
x

n

)

(8)

where γ ≈ .57721 is the Euler-Mascheroni constant.
Substituting this expansion for every log Γ(·) in the definition of cD, we find

cD(αβ) = − logα− γα−

∞
∑

n=1

(

log
(

1 +
α

n

)

−
α

n

)

(9)

+

K+1
∑

k=1

[

logαβk + γαβk +

∞
∑

n=1

(

log

(

1 +
αβk

n

)

−
αβk

n

)

]

Here, all the infinite sums are convergent. This allows some regrouping, and we find that several
terms cancel to zero. Our expression for cD(αβ now simplifies to:

cD(αβ) = − logα+

K+1
∑

k=1

logαβk (10)

+

∞
∑

n=1

(

log

(

K+1
∏

k=1

(

1 +
αβk

n

)

)

− log
(

1 +
α

n

)

)

Finally, via the binomial product expansion below, we realize that the infinite sum must be larger
than zero.

K+1
∏

k=1

(

1 +
αβk

n

)

= 1 +

K+1
∑

k=1

αβk

n
+ pos. const. →

K+1
∏

k=1

(

1 +
αβk

n

)

≥
(

1 +
α

n

)

(11)

Thus, by simply leaving off the infinite sum from Eq. (11) we have a valid lower bound on cD(·):

cD(αβ) ≥ − logα+

K+1
∑

k=1

logαβk (12)

Expanding logαβk = logα+ log βk, we can further simplify to

cD(αβ) ≥ K logα+

K+1
∑

k=1

log βk (13)

1. http://mathworld.wolfram.com/LogGammaFunction.html

4

C.2 Bound for the Expected value of the Dirichlet cumulant function

We now wish to compute the expected value of the bound in Eq. (13), under q(u|ρ̂, ω̂).
First, we can recall how to write log βk in terms of our stick length variables u:

log βk ,







log
(

uk
∏k−1

ℓ=1 (1−uℓ)
)

if k ∈ {1, 2, . . .K}

log
(

∏K

ℓ=1(1−uℓ)
)

if k = K + 1
(14)

Using this definition and carefully expanding the log product into a sum of logs, we can write Eq. (13)
in terms of u as follows

cD(αβ) ≥ K logα+

K
∑

k=1

(

log uk + (K + 1− k) log (1−uk)
)

(15)

Finally, applying the expectation operator and using linearity of expectations we have

Eq[cD(αβ)] ≥ K logα+

K
∑

k=1

(

Eq[log uk] + (K + 1− k)Eq[log 1−uk]
)

(16)

D. Optimization updates for ρ, ω

In this section, we describe how we determine optimal values for free parameters ρ, ω given fixed
values of other variational free parameters θ̂, ρ̂, τ̂ . We proceed in three steps: First showing math-
ematically how the ELBO terms LHDP and Lu can be expanded and manipulated to give a closed
form objective depending only on ρ, ω. Second, we frame a constrained optimization problem for
ρ, ω given this objective. Finally, we describe a transformation to an unconstrained optimization
problem that yields optimal ρ, ω values and can be implemented using modern gradient descent
methods like L-BFGS.

D.1 Derivation of Optimization Objective

The free parameters ρ, ω appear in both the surrogate bound on LHDP , and the global term Lu.
We give complete forms of each below, then bring them together to form the function to optimize
to find the best ρ, ω values.

First, Lu is defined as:

Lu(ρ̂, ω̂) = Eq

[

log
p(u|γ)

q(u|ρ̂, ω̂)

]

(17)

=
K
∑

k=1

cB(1, γ)− cB(ρ̂kω̂k, (1−ρ̂k)ω̂k)

+
(

1− ρ̂kω̂k

)

E[log uk]

+
(

γ − (1−ρ̂k)ω̂k

)

E[log 1−uk]

where cB(·) is the log cumulant function of the Beta distribution (a simplified two argument case
of cD(·)). Furthermore, all expectations here have closed-form

E[log uk] = ψ(ρ̂kω̂k)− ψ(ω̂k) (18)

E[log 1− uk] = ψ((1−ρ̂k)ω̂k)− ψ(ω̂k)

5

The other term LHDP is given by

LHDP (·) = Eq[log
[

p(z)
p(π)

q(π)

]

] (19)

=
∑D

d=1 Eq[cD(αβ)] − cD(θ̂d)

+
∑K+1

k=1

(

Ndk(r̂) + αEq[βk]− θ̂dk

)

Tk(θ̂)

where Tk(θ) =
∑D

d=1 Eq[log πdk], and Ndk(r̂) =
∑Nd

n=1 r̂dnk.
Applying our surrogate bound to deal with intractable expectation E[cD(αβ)], we have

LHDP (·) ≥ DK logα−
D
∑

d=1

cD(θ̂d) (20)

+D

K
∑

k=1

(

Eq[log uk] + (K+1−k)Eq [log 1−uk]
)

+

D
∑

d=1

K+1
∑

k=1

(

Ndk(r̂) + αEq[βk]− θ̂dk

)

Tk(θ̂)

Optimization objective: Combining Eq. (20) and Eq. (19) and keeping only terms that depend
on ρ, ω, we can define a new objective function LG:

LG(ρ, ω) =

K
∑

k=1

−cB(ρ̂kω̂k, (1−ρ̂k)ω̂k) (21)

+
(

D + 1− ρ̂kω̂k

)[

ψ(ρ̂kω̂k)− ψ(ω̂k)
]

+
(

D(K+1−k) + γ − (1−ρ̂k)ω̂k

)[

ψ((1−ρ̂k)ω̂k)− ψ(ω̂k)
]

+ αE[βk]Tk

D.2 Constrained optimization problem.

Eq. 21 is the objective function of the constrained optimization problem we solve to determine
optimal free parameters ρ, ω.

ρ̂, ω̂ = argmaxρ,ω LG(ρ, ω) (22)

subject to 0 < ρk < 1, ωk > 0 for k = 1, 2, ...K (23)

Below, we supply closed-form analytical gradient expressions for both ρ and ω, which can be used
with modern first-order constrained optimization solvers.

Gradient computation for ω: Taking the derivative of Eq. (21) with respect to entrym of vector
ω, we have

δ

δωm

[LG] =
(

D + 1− ρmωm

)[

ρmψ
′(ρmωm)− ψ′(ωm)

]

(24)

+
(

D(K+1−k) + γ − (1−ρm)ωm

)[

(1−ρm)ψ′((1−ρm)ωm)− ψ′(ωm)
]

6

Gradient computation for ρ: First, define ∆ as a K ×K + 1 matrix of partial derivatives of
Eq[βk] with respect to ρ

∆mk ,
δ

δρm
E[βk] =











− 1
1−ρm

E[βk] if m < k
1
ρm

E[βk] if m = k

0 if m > k

(25)

Now, the derivative of Eq. (21) with respect to entry m of vector ρ is

δ

δρm
[LG] = ωm(D + 1− ρmωm)ψ′(ρmωm) (26)

− ωm

(

D(K + 1− k) + γ − (1− ρm)ωm

)

ψ′((1 − ρm)ωm)

+ α

K
∑

k=1

∆mkTk

D.3 Transformation to unconstrained optimization problem.

Both target variables ρ, ω have simple bound constraints on each of their K entries. Each entry of
ρ lies in [0, 1], while each entry of ω must be larger than 0. We can define an invertible transform
between constrained scalars ρk, ωk and unconstrained real scalar variables ck, dk as follows:

ck , sigmoid−1(ρk)

dk , logωk

ρk , sigmoid(ck) =
1

1 + e−ck

ωk , edk

(27)

As shorthand, we write ρ(c) to denote the vector ρ obtained by transforming the input vector c.
Similarly, we write ω(d) to be the vector ω obtained by applying the transform to input d. We can
then define an unconstrained optimization problem

c∗, d∗ ← argmaxc,d LG

(

ρ(c), ω(d)
)

(28)

The optimal values c∗, d∗ can be simply transformed to ρ∗, ω∗, which are by construction optimal
solutions to our original problem defined in Eq. (22)

Our unconstrained objective can be solved via gradient descent, where the gradients can be easily
computed by the chain rule using our original gradients with respect to ρ, ω as inputs.

The gradient at entry m of vector c is

δ

δcm
[LG] ,

δ

δcm
[ρm] ·

δ

δρm
LG (29)

= ρm(1− ρm)
δ

δρm
LG, where ρm ,

1

1 + e−cm

Similarly, the gradient at entry m of vector d is

δ

δdm
[LG] ,

δ

δdm
[ωm] ·

δ

δωm

LG (30)

= ωm

δ

δωm

LG, where ωm , edm

7

Ndk
doc-topic counts
 for select topics

89.5 64.8 0 0 0

90.8 64.2 8.4 0 0

89.8 62.4 8.1 8.1 0

88.7 61.6 7.2 7.1 5.5

 0 50 100 150 200
num E step iters

-6.3

-6.2

-6.1

si
n
g
le

 d
o
c

E
LB

O

0 20 40 60 80 100
num pass thru data

−7.35

−7.30

−7.25

−7.20

E
LB

O
 o

b
je

ct
iv

e

MOfix+SpRestarts

MOfix

Figure 3: Sparsity-promoting restarts for local update steps on the Science corpus with K = 100.
Left: Example fixed points of the document-topic count summary statistic Ndk for a single document
in the Science corpus. We show only select topic indices out of all K = 100. Center: Trace of a single
document’s objective L during the local step inference for 50 random initializations (dashed lines). The
solid lines show one run with sparsity-promoting moves enabled. This run climbs through the color
coded fixed points in the left plot. Right: Trace plot of the whole-dataset objective L across many passes
through the whole Science corpus. Using sparsity-promoting restarts yields noticeable improvements
in model quality.

E. Local Step Algorithm

In this section, we describe the local step algorithm. When visiting a document d, we need to infer
token soft assignments r̂dn for the Nd tokens in this document, as well as the topic weight parameter
vector θ̂d for this document (a vector of size K +1). As described in the main paper, these two free
parameters have inter-dependent updates. Thus, we need an initialization heuristic.

We suggest thinking of the initialization in terms of the initial value for π̃dk = expE[log πdk], for
each active topic k ∈ 1, 2, . . .K. We interpret this quantity intuitively as the “probability” of topic
k in in document d. We are free to set this initial vector to any valid vector on the simplex. In the
main paper Fig. 3, reproduced and expanded here in Fig. 3, we show how 50 random initializations
of π̃dk can lead to very diverse fixed points with different values for Ndk and consequently different
objective score trajectories.

As a reasonable heuristic, we suggest setting π̃dk to E[βk]. This makes sense under the model:
when visiting a new document, we sensibly guess that the probability of topic k in this document
will be our estimate of the topic’s probability across all documents.

Given an initial value of π̃d, we obtain an initial value for r̂d using the update in the main paper.
Then, we iteratively alternate between updates to θ̂d and r̂d until convergence occurs. To assess
convergence, we monitor the sufficient statistic Ndk for each active topic, and halt when the absolute
change from the previous iteration for all topics falls below a defined threshold (we use 0.0001), or
until a prescribed budget of computation has been exhausted (we set this to 100 iterations).

If computational cost is not a concern, trying multiple restarts of this algorithm from different
initializations and selecting the best one in terms of the resulting objective L(·) would be good
practice. However, each independent restart each requires many iterations to converge, which can
be expensive. We find that our recommended initialization plus our sparsity-promoting restarts
(where each restart runs for a very small budget of 2-5 iterations) provide successful performance
while remaining relatively affordable. You can see in Fig. 3 that with both this initialization and
sparse restarts enabled, trace plots of the whole-dataset objective as more data is seen show dramatic
improvement over simply using the heuristic initialization alone (dashed red line).

8

F. Delete Move

Delete moves allow removal of unnecessary topics that is not possible via our pair-wise merge moves.
As shown in our toy-bars experiment plots (main paper’s Fig. 5), a common pitfall is that inference
can get stuck with some extra “junk” topics which are assigned to few tokens in only a few documents.
These topics are often not possible to eliminate via pair-wise merges, but rather require document-
specific changes to local token parameters. To remove these “junk” topics, delete moves provide
flexible document-specific reassignment at greater cost than pair-wise merge moves. Merges and
deletes complement each other: merges remove redundant topics that appear in many documents,
while deletes are for rare, junk topics. Together, these moves create compact, interpretable models
that are not slowed down by useless computations.

Below, we describe first how a delete move would work if we could afford explicitly updating all
documents in the dataset. Next, we describe how deletes work in our memoized framework.

F.1 Whole-dataset delete construction.

Delete moves remove some topic, indexed by j, from a current set of parameters and sufficient
statistics of size K+1. For simplicity, this explanation assumes j is last in index order, but in fact j
can be at any position. The move constructs new parameters and new sufficient statistics S′, N ′ of
size K, where any mass assigned to topic j has been reallocated among the other topics. Here, unlike
the merge move, we have no one-step rule for constructing the candidate local parameters. Instead,
we use a heuristic initialization followed by refinement coordinate ascent updates. We initialize
sufficient statistics by simply removing any entries associated with topic j.

Original: N = [N1 . . . NK Nj] (31)

Candidate Init: N ′ = [N1 . . . NK]

Given these initial summaries, we take a global step to create K candidate global parameters. The
main paper’s Fig. 1 reviews the big picture for how summary statistics lead to global parameter
updates. After creating the candidate global parameters, we realize that τ̂ ′ will have exactly the
same first K topics as the original model. For ρ̂′, ω̂′, the resulting E[β] will be similar, too. Next, a
local step reassigns all tokens (including those ignored) among the K remaining topics. After one
more global step, we have a viable candidate model q′ representing the whole dataset. This model
can be compared to the original, and kept if the objective improves.

F.2 Memoized delete construction.

For large datasets, it is infeasible to perform several local/global update cycles for all documents
just to evaluate one candidate move. A more scalable delete move is possible because we assume
junk topic j has only a small subset of documents with appreciable mass, while most documents
assign Ndj ≈ 0. Thus, only the small set satisfying Ndj > ǫ need to be edited explicitly, where we
set ǫ = 0.01.

The memoized delete move happens in three steps. First, we gather all documents satisfying this
threshold test into a target dataset during a standard pass of the dataset. Second, we construct the
delete candidate model q′ from the target set, performing the simple construction described above
while holding the non-target sufficient statistics fixed. That is, for each additive sufficient statistic
vector N,S, T in the previous model, we create candidates N ′, S′, T ′ that satisfy the following
relation:

N ′
k = Nk −N

before
k +N

after
k , k ∈ {1 . . .K} (32)

Here, N before
k is the statistic for topic k on the target set before removing j, and N

after
k is the

computed statistic on the target set after removing j and performing the several updates.

9

For the specific case of the token count statistic N ′ on the target set, we know that Nǫ +
∑K

k=1N
′
k = Nj +

∑K

k=1Nk where Nǫ represents the small mass assigned to j from documents that
did not pass the threshold test. If accepted, sufficient statistic vector N ′ will soon accurately reflect
all data (including the small discarded mass) after a complete pass of local and global steps at all
batches.

To determine acceptance, we evaluate the objective L(·) using candidate global parameters
ρ̂′, ω̂′, τ̂ ′, which are obtained via direct updates from N ′, S′, T ′. For the local arguments to L(·), we

use the inferred parameters r̂d, θ̂d from documents in the target set.
If the candidate model improves this objective, we accept it. After accepting, we need to adjust all

stored batch-specific summaries to reflect the new model. Otherwise, our new aggregate summaries
will not be consistent with the sum of stored batch summaries, and subsequent incremental updates
will be invalid. We thus edit the stored statistics for each batch to reflect the final state of the
target-set documents from that batch.

Immediately after a delete move, we do not have the required ELBO summaries to exactly
compute the bound after visiting the next batch. However, after completing a complete lap through
all batches, the relevant summaries will be refreshed and the ELBO computable.

F.3 Selecting topics to delete.

Delete move costs scale with the number of documents in the target set. We specify a maximum
cap for the total documents we can afford to process as a target set: Dtarget = 500. Any topic
occuring in fewer than Dtarget documents is eligible for deletion. We select among this eligible set
as many topics as possible until the total cap is reached, and build the target set as the union of all
documents passing the threshold test for any selected topic. This allows potentially multiple topics
to be deleted in one pass through the data, each one considered independently, while never exceeding
the specified cap on target set size.

References

Michael C. Hughes, Dae Il Kim, and Erik B. Sudderth. Reliable and scalable variational inference for the
hierarchical Dirichlet process. In Artificial Intelligence and Statistics, 2015.

10

