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Chosen form of           is important.  
• MAP Point Estimate: 
   Fails to penalize empty topics effectively.    

•  Full distribution: 
   Integrate away all parameters that grow with K. 

Initialize global factors 
Loop until converged: 
        a) For each batch in dataset: 

Reliable and scalable variational inference 
for the hierarchical Dirichlet process 

HDP topic model 

Model selection 

• As scalable as stochastic, without pesky learning rate. 
• Requires tracking statistics for each batch & topic. 

Hughes & Sudderth, NIPS ’13 
Neal & Hinton ’99 

Experiments Reliable inference 

Delete move 

Merge move 

Toy bars Wiki articles 

NY Times articles 
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Accepted Merge  

Michael C. Hughes, Dae Il Kim, & Erik B. Sudderth  Dept. of  Computer Science, Brown University  
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Scalable variational inference 
Memoized algorithm 
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New variational objective 

q(�)q(�)

          b) Try merge proposals 
          c) Try delete proposals 

N1
k

Incremental update to whole-dataset value: 

Whole-Dataset 
 

Batch-Specific  
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Local / Summary step gives new batch value:  

Updating tracked statistics 

• HDP prior: data-driven learning of  number of  topics K 
• Our direct assignment representation better than alternatives 

q(�) = ��⇤

q(�) = StickBreaking(⇢̂, !̂)
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Example documents 
Drawn from 10 true topics. 

• Memoized alg. with merges/deletes rapidly finds small set of  high-quality topics. 
• Other algorithms get stuck quickly or improve very slowly. 

true topic 
assignments 

Train on toy data with assignments fixed to 
truth, with extra empty topics. 

Goal: does objective increase or decrease as 
more empty topics added? 
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Goal: Find approximate factorized posterior  
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• Algorithm should recover similar compact set of  topics, regardless of  initialization. 
• Algorithm should avoid local optima & remove useless junk topics. 

empty 
topics 

New function lower bounds intractable ideal objective. 
Penalizes junk topics; key to merge/delete moves. 

 language 
 latin 
 letter 
 dialect 
 speak 
 speaker 
 sound 
 verb 

  linguistic 
  linguist 
  language 
  speech 
  linguistics 
  grammatical 
  pronunciation 
  suffix 

Accepted Merge  

•  Junk topic mass reassigned among all remaining topics. 
• More flexible than merge, but only scales with smaller topics. 
• Requires extra local step on small target dataset. 

• Redundant pair of  topics combined into one single topic. 
• Exact evaluation of  proposal possible via tracked summaries. 
• No extra local step required, only a few pair-wise statistics. 

Must also track summaries 
                 for k = 1, 2, … K. 

Liang et al. ‘07 
Bryant & Sudderth ‘12 

1000 docs 
900 vocab types 

7961 docs 
6131 vocab types 

1.8 million docs  
8000 vocab 

p(topic | doc.) ⇡d · · ·
1 2 K >K
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· · ·

Stochastic algorithm 
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Whole-Dataset 
 

Batch-Specific  
 

• Natural gradient descent for global step update. 
• Less effective for merges/deletes. Can’t exactly check whole-dataset objective. 

q(�)q(�)q(⇡)q(z) ⇡ p(�,�,⇡, z|x)
several possibilities…  

Hoffman, Blei, et al ‘12 
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0 1 2 3
num. empty topics

−1

0

1

ch
an

ge
 in

 E
LB

O HDP point est
HDP exact
HDP surrogate

ch
an

ge
 in

 E
LB

O
 

good 

bad! 

Surrogate objective 

Nested truncation Sparse restarts in local step 
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Patch samples from trained model 
Showing top 4 clusters for each image,  
ranked out of  a shared set of  K=200. 

Image patches 3 million 8x8 patches 
from 400 images 

Model comparison: 
•  image-specific frequencies (HDP admixture) 
•  universal frequencies (DP mixture) 

Only assign tokens to first K topics of  infinite set. 

Easy to contract truncation level. 

q(⇡d) = DirichletK+1(✓d1, ✓d2, . . . ✓dK , ✓d>K)

Track probability of  all inactive topics (k > K). 
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�
Dirichlet log norm. constant 
Lacks closed-form expectation 

Tight lower bound 
Expectation w.r.t.          easy 

Holds for all 
q(�) = ��⇤

q(zdn) = [rdn1 rdn2 . . . rdn7 rdn8 0 . . .]

q(zdn) = [rdn1 rdn2 . . . rdn7 0 0 . . .]

K=8 

K=7 

↵ > 0

Makes merge & delete possible. 

Topics > K are conditionally independent of  data.  
Need not be represented during inference. 

New move for escaping local optima at each doc. 
• Propose zero values for small-mass topics.  
• Accept if  improves obj. function. 

Update batch 1 

Nk : total count of  tokens assigned to topic k 

§ memo + delete & merge, init=smart 
§ memo + delete & merge, init=random 
§ memoized, init=random 
§ stochastic, init=random 
§ Gibbs sampler 
§ stochastic (CRF) 

Teh et al. ‘06 
Wang et al. ‘11 

Legend: 
 
 
 
 
 

Python code 
bitbucket.org/michaelchughes/bnpy-dev 
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Delete 
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doc A 

Net change in doc-topic count            after delete Ndk

doc B 
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doc D 

Document- 
specific  

reassignment 
via local step 
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§  Oct ‘14: single thread  
§  May ‘15: 8 workers 

Recent parallelization of  code makes 
large-scale analysis possible. 

Algorithm template 


