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1 Introduction
Discrete count data are common: news articles can
be represented as word counts, patient records as
diagnosis counts, and images as visual descriptor
counts. Topic models such as latent Dirichlet al-
location (LDA, Blei et al. (2003)) are popular for
finding cooccurance structure in datasets of count
vectors, producing a small set of learned topics
which help users understand the core themes of a
corpus too large to comprehend manually.

The low-dimensional feature space produced by
LDA can be useful as the input to some predictive
task, where the user seeks to predict labels asso-
ciated with each count vector. Supervised topic
models extend standard topic models to model
document topics and labels jointly, leading to bet-
ter label predictions and more informative topic
representations.

In this work, we correct a key deficiency in
previous formulations of supervised topic mod-
els. Our learning objective directly encourages
low-dimensional data representations to produce
accurate predictions by deliberately encoding the
asymmetry of prediction tasks: we want to predict
labels from text, not text from labels. Approaches
like supervised LDA (sLDA, McAuliffe and Blei
(2008)) that optimize the joint likelihood of labels
and words ignore this crucial asymmetry.

2 Background
Standard LDA. The LDA topic model finds
structure in a collection of D documents, or more
generally,D examples of count vectors. Each doc-
ument d is represented by a count vector xd of V
discrete words or features: xd ∈ ZV+. The LDA
model generates these counts via a document-
specific mixture of K topics:

πd|α ∼ Dir(πd | α),
xd|πd, φ ∼ Mult(xd |

∑K
k=1 πdkφk, Nd). (1)

The random variable πd is a document-topic prob-
ability vector, where πdk is the probability of topic
k in document d and

∑K
k=1 πdk = 1. The vec-

tor φk is a topic-word probability vector, where
φkv gives the probability of word v in topic k and∑V

v=1 φkv = 1. Nd is the (observed) size of doc-
ument d: Nd =

∑
v xdv. LDA assumes πd and

φk have symmetric Dirichlet priors, with hyperpa-
rameters α > 0 and τ > 0.

Topic-based Prediction of Binary Labels.
Suppose document d also has a binary label yd ∈
{0, 1}. Standard supervised topic models assume
labels and word counts are conditionally indepen-
dent given document-topic probabilities πd:

yd|πd, η ∼ Bern(yd | σ(
∑K

k=1 πdkηk)), (2)

where σ(z) = (1 + e−z)−1 is the logit function,
and η ∈ RK is a vector of real-valued regression
weights with a vague prior ηk ∼ N (0, σ2η).

3 Prediction-Constrained sLDA

We propose a novel, prediction-constrained (PC)
objective that finds the best generative model for
words x, while satisfying the constraint that topics
φ must yield accurate predictions about labels y
given x alone:

min
φ,η
−
[ D∑
d=1

log p(xd | φ, α)
]
− log p(φ, η) (3)

subject to −
∑D

d=1 log p(yd | xd, φ, η, α) ≤ ε.
The scalar ε is the highest aggregate loss we are
willing to tolerate, and p(φ, η) = p(φ)p(η) are
independent priors used for regularization. The
structure of Eq. (3) matches the goals of a domain
expert who wishes to explain as much of the data
x as possible, while still making sufficiently accu-
rate predictions of y.

Applying the Karush-Kuhn-Tucker conditions,
we transform the inequality constrained objective
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Figure 1: Movie and Yelp tasks: Performance metrics vs. fraction of labeled training documents used for 100 topics. On both
tasks, we artificially include only a small fraction (0.05, 0.10, or 0.20) of available training labels, chosen at random. Fully
supervised methods (e.g. BP-sLDA, MED-sLDA) are only given documents (xd, yd) from this subset, because third-party code
does not allow using unlabeled data at training. Left: Heldout discriminative performance (AUC, higher is better). Note that
improvements over supervised learning algorithms, including logistic regression, are particularly large when the fraction of
labeled documents is small. Right: Heldout generative performance (negative likelihood, lower is better).

in Eq. (3) to an equivalent unconstrained optimiza-
tion problem:

min
φ,η
−

D∑
d=1

[
log p(xd|φ) + λε log p(yd|xd, φ, η)

]
− log p(φ, η). (4)

For any prediction tolerance ε, there exists a scalar
multiplier λε > 0 such that the optimum of Eq. (3)
is a minimizer of Eq. (4). The relationship be-
tween λε and ε is monotonic, but does not have
an analytic form, so we search over the 1-D space
of penalties λε for an appropriate value.

Computing this objective directly is not feasi-
ble as computing both p(xd|φ) and p(yd|xd, φ, η)
requires taking an intractable integral over the
latent variable πd. For learning, we approxi-
mate this objective using a point estimate of πd,
where πd is fixed to its MAP estimate given xd:
argmaxπd p(πd|xd, φ, α). Using this tractable ob-
jective, we can fit the model parameters (φ, η) with
stochastic gradient descent.

If documents are partially labeled, the objective
of Eq. (3) can be naturally generalized to only in-
clude prediction constraints for observed labels.
This allows our approach to be easily applied to
semi-supervised settings.

4 Experimental Results
We evaluate our approach on two real-world bag-
of-words prediction tasks, comparing with a num-
ber of discriminative baselines including: lo-
gistic regression, the fully supervised BP-sLDA
algorithm of Chen et al. (2015), the unsuper-
vised Gibbs sampler for LDA (Griffiths and
Steyvers, 2004) from the Mallet toolbox (McCal-
lum, 2002), and the supervised MED-sLDA Gibbs

sampler (Zhu et al., 2013) which is reported to im-
prove on an earlier variational method (Zhu et al.,
2012). In our experiments we partition documents
into three sets (training/validation/test). For all
methods shown, we tune any hyperparameters on
the validation set and report results on the test set.
Movie task. Each of the 4004/500/501 doc-
uments is a movie review by a professional
critic (Pang and Lee, 2005), with V = 5338 terms.
Each review has a binary label, where yd = 1
means the critic gave the film more than 2 stars.
Yelp task. Each of the 23159/2895/2895 docu-
ments (Yelp Dataset Challenge, 2016) aggregates
all text reviews for a single restaurant, using V =
10, 000 vocabulary terms. Each document also has
a label indicating the availability of wifi.
Discussion. Fig. 1 shows that PC-sLDA is con-
sistently competitive with purely discriminative
methods like logistic regression (LR) or BP-sLDA
when datasets are fully labeled. When the num-
ber of available labels is limited, PC-sLDA still
performs well. For the Movie task in Fig. 1(a),
PC-sLDA dominates the AUC metric for small
fractions of labels (0.05, 0.1), beating even LR.
In this regime, unsupervised Gibbs-LDA has bet-
ter AUC than BP-sLDA and MED-sLDA, demon-
strating the value of unlabeled data for prediction.
On Yelp, PC-sLDA predictions at small fractions
are better than all but BP-sLDA.

Fig. 1 also shows trends in heldout data negative
log likelihood (lower is better). As expected, un-
supervised Gibbs-LDA consistently achieves the
best scores, as explaining data is its sole objec-
tive. However, PC-sLDA is able to achieve com-
petitive likelihood scores, while achieving better
AUC scores when compared to all other methods.
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