
Supplementary Material:
Effective Split-Merge Monte Carlo Methods for

Nonparametric Models of Sequential Data

Michael C. Hughes1, Emily B. Fox2, and Erik B. Sudderth1

1Department of Computer Science, Brown University, {mhughes,sudderth}@cs.brown.edu
2Department of Statistics, University of Washington, ebfox@stat.washington.edu

Abstract

Here, we provide further details for the NIPS 2012 submission “Effective Split-
Merge Monte Carlo Methods for Nonparametric Models of Sequential Data”. The
first section provides mathematics for sampling transition weights η, which is a
correction from Fox et al. [1]. Next, we offer details on the procedure for split-
merge updates. Finally, we provide additional experimental details and results for
toy data experiments, analysis of motion capture sequences, and activity discovery
using the CMU Kitchen videos.

A BP-HMM Transition Weights η Sampling Details

This section develops a corrected posterior distribution for sequence-specific transition weights η.
Let ηi denote all transition weights for item i, and let ηij be the (unnormalized) outgoing transition
probability vector from state/behavior j in sequence i.

Fox et al. provide the following posterior for ηij , which we find to be incorrect

ηijk|zi ∼ Gamma(Nijk + α+ δj,kκ, 1) (NOT CORRECT) (1)

where Nijk counts the number of transitions from state j to k in sequence zi.

As a quick demonstration of incorrectness, note that the variance of the above distribution increases
with more data (larger Nijk), which is certainly not desirable.

Instead, the correct posterior for ηij is given up to a proportionality constant as

p(ηijk|zi, fik = 1) ∝ (ηijk)Nijk+α+δj,kκ−1e−ηijk[∑
k′:fik′=1 ηijk′

]Nij
(2)

where Nijk counts the number of transitions from state j to k in sequence zi, and Nij =∑
k:fi,k=1Nijk. This expression can be derived simply by multiplying the Gamma prior on ηijk

by the likelihood p(zi|ηi, fi), and dropping all multiplicative factors constant with respect to ηijk.

Draws from this posterior can be obtained by sampling auxiliary variables

η̄ij ∼ Dir(. . . , Nijk + α+ δj,kκ, . . .) (3)
Cij ∼ Gamma(Kα+ κ, 1) (4)

and then deterministically setting ηijk = Cij η̄ijk. This procedure inverts the usual Gamma to
Dirichlet scaling transformation used to sample Dirichlet random variables.

1

As a sanity check, this correct procedure has variance that decreases with addition of more data.
The Dirichlet draw η̄ij will have smaller variance for entry k whenever Nijk increases, and the Cij
scale factor is independent of observed data.

B BP-HMM Split-Merge MCMC Details

Here, we provide additional algorithmic details on the process of our novel split-merge moves.
To review, our SM moves operate on the Markov state Ψ = (F, z) of the BP-HMM MCMC chain,
where F denotes the binary feature assignment matrix and z = {z1 . . . zN} denote all HMM discrete
state sequences. We will use fi to denote the i-th row of F.

First, we provide a high-level overview of a split-merge move in Alg. B.1. Next, we give details
on the construction of a merge proposal in Alg. B.2, complementing the algorithm provided in the
main paper (Alg. 1) for a split proposal. Finally, we provide a restricted Gibbs (RG) sampling
algorithm (Alg. B.3) for drawing individual feature assignments ka, kb for one sequence within
the sequentially allocated split proposal. This includes important details about how the transition
probability is calculated for the acceptance ratio. Our hope is that this information might provide a
knowledgable practioner sufficient details to fully understand and reproduce our split-merge MCMC
moves.

B.1 Overall Split-Merge Procedure

As outlined in the main paper, completing one SM update requires several steps: selecting anchor
items, selecting features to determine the appropriate move (split or merge), constructing the pro-
posed assignment variables F∗, z∗ under the chosen move, and finally accepting or rejecting via
Metropolis-Hastings. This high-level procedure is specified in Alg. B.1.

Alg. B.1 SplitMergeBPHMM(x,Ψ, α, κ, λ)
Input: current markov state Ψ = (F, z)
Output: new state Ψ = (F∗, z∗)
Procedure:

1: Select anchor items i, j uniformly at random from all data items
2: Select feature ki at random from those possessed by item i
3: Select feature kj according to q(kj |x,Ψ, i, j, ki) (see Eq. (5) of main paper)
4: if ki = kj then
5: Ψ∗, log qfwd ← SplitProposal(Ψ, x, i, j, ki, ka, kb)
6: log qrev ← MergeProposal(Ψ∗, x, i, j, ka, kb, ki,Ψ)
7: else
8: Ψ∗, log qfwd ← MergeProposal(Ψ, x, i, j, ki, kj , km)
9: log qrev ← SplitProposal(Ψ∗, x, i, j, km, ki, kj ,Ψ)

10: end if
11: Calc. joint log prob of current and proposed states p(x,Ψ∗), p(x,Ψ)
12: Compute acceptance ratio ρ, depending on whether we split or merge

ρ =
p(x,Ψ∗)

p(x,Ψ)

qrev(Ψ|Ψ∗)
qfwd(Ψ∗|Ψ)

qk(ki, kj |i, j,Ψ∗)
qk(ki, kj |i, j,Ψ)

(5)

13: return Ψ∗ with prob. min(ρ, 1), and Ψ otherwise

Eq. (5) provides the generic formula for computing the acceptance ratio of a split-merge move,
agnostic to whether a split or a merge is actually proposed. To fill in details explicitly, the accept
ratios for split and merge moves are as follows

ρsplit =
p(x, z∗,F∗)

p(x, z,F)

qmerge(F, z | F∗, z∗, ka, kb)
qsplit(F∗, z∗ | F, z, km)

qk(ka, kb | F∗, z∗, i, j)
qk(km, km | F, z, i, j)

(6)

ρmerge =
p(x, z∗,F∗)

p(x, z,F)

qsplit(F, z | F∗, z∗, km)

qmerge(F∗, z∗ | F, z, ka, kb)
qk(km, km | F∗, z∗, i, j)
qk(ka, kb | F, z, i, j)

(7)

2

Next, we focus on the proposal construct procedures, denoted MergeProposal and
SplitProposal in Alg. B.1. Note that the algorithm in the main paper specifies
SplitProposal. Here, we provide the complementary sequential allocation procedure used to
create a merge proposal.

B.2 Merge Proposal via Sequential Allocation

Constructing a merge proposal given input features ka, kb follows a sequential allocation process,
similar to the SplitProposal outlined in the main paper (Alg. 1). Here, given fixed choice of
ka, kb the proposed feature assignments are deterministic: we set f∗`,km = 1 if ` is in the active set
S, and f∗`,km = 0 otherwise. However, we still completely update the state sequences of the active
set. Alg. B.2 specifies the necessary steps.

As in Alg. 1 of the main paper, the order in which the active set is traversed can be chosen uniformly
at random. This choice has no bearing on the acceptance ratio, since it can be viewed as choosing a
particular Markov transition kernel, just like the choice of anchor items i, j or the window location
of the data-driven birth/death moves. All of these choices can be made independent of the current
state of the sampler (F, z), and thus need not be considered in the acceptance ratio.

Alg. B.2 MergeProposal(Ψ,x, i, j,S, ka, kb, km)
Input: current MCMC chain state Ψ = (F, z)
Output: new state Ψ∗ = (F∗, z∗)
Procedure:

1: Delete assignments to old features: F∗ ← F, F∗:,[kakb] ← [0 0]

2: Add new feature km to every item ` ∈ S: f∗`,km ← 1
3: Initialize proposed state sequences, setting anchor state sequences to new feature km

z∗`t ← z`t for all items `
z∗it ← km if zit = ka or zit = kb

z∗jt ← km if zjt = ka or zjt = kb (8)

4: Create emission parameters θ̂ ← posterior mean of p(θ|x, z∗) for all features
5: Create transition parameters η̂` ← prior mean of η` for all items ` ∈ S
6: for all non-anchor items ` in active set S do
7: sample state sequence z∗` ∼ p(z`|x`, f`, θ̂, η̂`)
8: update emission parameters θ̂km ← posterior mean of p(θkm |{xnt|z∗nt = km, n ∈ S1:`})
9: NB: This expectation is only taken w.r.t. sequences x`, z

∗
` already visited in the active set

10: end for
11: Sample for anchor items i, j
12: sample state sequence z∗i ∼ p(zi|xi, fi, θ̂, η̂i)
13: sample state sequence z∗j ∼ p(zj |xj , fj , θ̂, η̂j)

B.3 Details of Restricted Gibbs sampling

In Alg. B.3 below, we show in detail the procedure for resampling the feature assignments for one
particular data item, as in line 5 of Alg. 1 in the main paper. Note that we only sample the item’s as-
signment to the two features created by a split move, and we only consider candidate assignments in
which at least one of new features is possessed by the object. This restriction maintains reversibility
of the split-merge move.

f`,[ka kb] ∼


[1 0]

[0 1] w. prob. ∝ p(f`,[ka kb]|FSprev)p(x`|f`, η`, θ̂)
[1 1]

(12)

This is a restricted Gibbs (RG) algorithm that procedes by sequential allocation: we sweep through
the active set S and allocate a restricted set of features ka, kb to item ` based on the assignments

3

Alg. B.3 SampleSplitFeatures-RestrictedGibbs(`,F, θ̂, η̂,x`,Sprev, [ka, kb],F
target)

Input: feature matrix F, HMM parameters θ̂, η̂, data x`, set of previously updated items Sprev
OPTIONAL: desired output Ftarget (for computing reverse probability of a merge move)
Output: (1) updated feature assignments f`,[ka,kb] for item ` , given FSprev,[ka kb]

note that this new assignment is restricted: item ` must possess at least one of ka, kb
(2) prob. of transition from input f` to new assignment, denoted by qRG

Procedure:
1: Define ma,mb as counts of how many previously seen items (not `) possess features ka, kb.

ma =
∑
a∈Sprev

fa,ka mb =
∑
b∈Sprev

fb,kb Nprev = |Sprev| (9)

2: Construct Gibbs conditional probabilities for each possible value of f`,[kakb]
Note: only defined here up to a multiplicative constant

p[1 0] ← (ma)(Nprev −mb + β)p(x`|f`,[ka kb] = [1 0], η̂`, θ)

p[0 1] ← (Nprev −ma + β)(mb)p(x`|f`,[ka kb] = [0 1], η̂`, θ)

p[1 1] ← (ma)(mb)p(x`|f`,[ka kb] = [1 1], η̂`, θ) (10)

3: Compute normalization constant for the choice of feature assignment:

Zp ← p[1 0] + p[0 1] + p[1 1] (11)

4: if Ftarget exists: then
5: f`,[ka kb] ← f target

`,[ka kb]

6: else

7: f`,[ka kb] ∼


[1 0] with prob. p[1 0]

Zp

[0 1] with prob. p[0 1]

Zp

[1 1] with prob. p[1 1]

Zp

Draw ka, kb feature assignment for item `

8: end if

9: qRG ←


p[1 0]

Zp
if f`,[ka kb] = [1 0]

p[0 1]

Zp
if f`,[ka kb] = [0 1]

p[1 1]

Zp
if f`,[ka kb] = [1 1]

Record prob. transition from old to new f

made to previously visited sequences. We call this set of previously assigned items Sprev, which is a
subset of S. Its size is Nprev = |Sprev|
Studying the posterior equation for f`,[ka kb], we can see that it nicely factors into a prior and a
likelihood. The prior term can be computed using the Indian Buffet process generative model,
since both ka and kb are shared features. Thus, it is simply ratios of count sufficient statistics. The
probability that we possess ka is justma (the number of previous sequences that possess ka) divided
by Nprev + β. The likelihood term is simply the marginal probability of the observed sequence,
summing over all possible discrete state sequences, given the deterministic auxiliary parameters
θ̂, η̂`. This considers using both the proposed available features ka, kb as well as all other features
possessed by item `. This likelihood can be computed efficiently via dynamic programming, and
this exact routine is conveniently also necessary for the standard sampling of shared features.

Two things are important to highlight about this algorithm as a piece of a larger split-merge proposal
move. First, we must track the proposal probabilities qRG of making each random choice. These
are used in the acceptance ratio of Alg. B.1. Second, we must be able to compute the probability
of reverse moves. That is, if we perform a merge from Ψ to Ψ∗, the acceptance ratio requires
computing the probability of obtaining Ψ from Ψ∗ via a split. In this setting, we know in advance
the destination state Ψ, so we don’t actually need to sample anything, but we do need to walk-through
the sampling process step by step and tally the probability of making each discrete choice that leads
from Ψ∗ back to Ψ. When the split construction process is called with a known destination state
Ψtarget = (F target, ztarget), the procedure does not randomly assign variables, but instead computes

4

the probability of assigning to the provided target values. Although Alg. B.3 describes the direct
calculation of these transition probabilities qRG, in practice we recommend only tracking logarithms
of this quantity to prevent numerical problems.

Note that an analogous process to B.3 occurs for resampling the state sequence z` for some item `
in both split and merge moves. A total probability qz of transitioning from z to z∗ is computed by
tallying up the transition probabilities at each discrete assignment made by the Gibbs block sampler
of z` given fixed f` and point estimates θ̂, η̂`. When computing reverse moves, a target configura-
tion is provided, and rather than actually making random assignments the algorithm computes the
probability of the sequence of choices that leads to the target state.

C Toy Data Experimental Details

Here, we provide further details for the toy data experiments from Sec. 4-1 of the main paper.

C.1 Hyperparameter Settings

For all toy data experiments, we fix BP hyperparameters to γ = 2, β = 1 and HMM hyperparam-
eters to α = 2, κ = 200 (which yields high stickiness to match the high self-transition probability
used to generate the data). We could have easily sampled these hyper parameters, but we wish to di-
rectly compare the inference algorithms on F, z without extra complications. Additionally, we note
that when initialized to have just one state shared by all sequences, the parameters α, κ no longer
are identifiable (since just one state means there are no transitions possible, and thus the ”sticky”
parameter is meaningless). To prevent complications, we just fixed these to reasonable values for
these experiments.

C.2 Remove Redundant Feature Experiments

As mentioned briefly in the main paper, we study the ability of various BP-HMM samplers to remove
redundant features via a repeat initialization, diagrammed in Fig. C.1. The data is generated by 8
true states, and we know the actual F, z values for each generated item. We then create two “copies“
of each of the 8 true states, so that there are 16 states total, containing two disjoint sets of behaviors
sufficient to explain all the data. We assign the first half of data to set 1, and the second half to set 2,
initializing both F and z to their “true” values within the appropriate set. This creates a challenging
scenario for any inference method, since it must successfully merge down to one set of true states,
when each sequence is already stuck in a local optimum.

Figure C.1: Feature matrix for a
repeat initialization. White indicates
feature presence.

We show trace plots of all sampler methods in Fig. C.2.
We observe that for Gaussian and AR likelihoods, the SM
moves quickly converge down to a mode with all redun-
dant states removed, sometimes within five minutes. In
contrast, both DD and Prior reversible jump proposals
never merge down to the 8 true features within the alot-
ted hour. For Multinomial likelihoods, SM moves are still
faster, but the margin of victory, while clearly noticeable,
is somewhat smaller. The baseline samplers with Gibbs
and reversible jump moves are able to delete down to 8
features eventually in this scenario.

We attribute this faster convergence to the particular
multinomial toy data under study: each time step emitted
on average 5 symbols out of a vocabulary of 500, so pa-
rameter estimates for each copy of a true state are likely to
be noisy and slightly different depending on which sym-
bols happen to be seen more often. This noisyness can
easily cause one copy to be preferred over another after a while, allowing the Gibbs moves to con-
verge down to the true posterior with 8 states. We caution that it is difficult to compare across
likelihoods in general, since different settings of the likelihood hyperparameters can cause very dif-

5

Gaussian AR(1) Multinomial

0 500 1000 1500 2000 2500 3000 3500
1.36

1.38

1.4

1.42

1.44

1.46x 10
5

cpu time (sec)

lo
g

jo
in

t p
ro

b.

SM
DD
Prior

0 500 1000 1500 2000 2500 3000 3500
−1.85

−1.848

−1.846

−1.844

−1.842

−1.84x 10
6

cpu time (sec)

lo
g

jo
in

t p
ro

b.

SM
DD
Prior

0 500 1000 1500 2000 2500 3000 3500
−4.76

−4.755

−4.75

−4.745

−4.74

−4.735x 10
6

cpu time (sec)

lo
g

jo
in

t p
ro

b.

SM
DD
Prior

Figure C.2: Log probability trace plots comparing inference methods on the “remove redundant
features” task, from Sec. 4.1 of the main paper.
.

ferent behavior of the standard Gibbs methods, and we did not carefully match these settings across
datasets.

Overall, we observe that our SM moves make significant improvements over more local samplers in
this challenging setting, making a strong case for our new inference methods.

D Motion Capture Experimental Details

Here, we provide further details on the analysis of the motion capture (mocap) sequences, from Sec.
4.2 of the main paper.

D.1 Data Preprocessing

We use the same 12 channels as in [1], corresponding (roughly) to measurements of torso, neck,
R/L hips, R/L shoulders, R/L wrist, R/L knees, and R/L feet. All sequences in all datasets (small
and large) are recorded at 120 fps, and we take block averages with no overlap to obtain a D = 12
dimensional vector at each 0.1 second interval of motion.

D.2 Hyperparameter Settings

As in [1], we resample hyperparameters HMM parameters α, κ and BP parameter γ at each iteration
of all sampler runs on motion capture data. We further resample the concentration parameter β,
using Metropolis-Hastings updates with a Gamma proposal centered on the previous value for β,
similar to the proposals [1] discusses for α, κ.

For the prior on the parameters of the first-order auto-regressive Gaussian likelihood for the observed
joint angles, we choose the matrix-normal inverse Wishart due to conjugacy. This prior requires
several hyperparameters: scale matrix S0, degrees of freedom ν0, and column-wise precision matrix
R0. Together, these specify a prior on autoregressive coefficientsA and covariance Σ for a first-order
AR process with D = 12 dimensional observations as follows:

Σ ∼ W−1D (ν0, S0) (13)
A|Σ ∼MND(0,Σ, R0) (14)

We set ν0 = D + 2, S0 to 0.5 times the empirical covariance of first differences of all observation
sequences, and R0 = 0.5ID, where I is the identity matrix in D dimensions. We note that [1]
set S0 to 5 times the empirical covariance, rather than 0.5 as we do. We made this choice because
with our improved inference, we need not specify such a vague prior. Realistically, individual
discovered behaviors should have less variability than all motion sequences taken together without
regard for different actions. We validated our better setting of these parameters by performing a
“cheating” initialization of an MCMC run: starting from the human annotated ground truth of the
small 6 sequence dataset, we found that under our settings the sampler stayed near the “ground truth”
configuration throughout thousands of iterations. In contrast, a sampler initialized to truth under the
more vague prior of [1] quickly wandered away from this ground truth, gaining in likelihood by
deleting several unique behaviors. When the goal is comparing sampler runs to this ground truth,
we found it better to use hyperparameter settings in which ground truth is a (possibly local) mode of
the posterior.

6

Note that this difference in likelihood parameter settings might explain why in our experiments the
BPHMM sampler from the prior performs somewhat worse (in terms of Hamming distance) on the
6 sequence dataset than reported in [1].

E CMU Kitchen Experimental Details

Here, we provide further details on the analysis of the CMU Kitchen dataset, from Sec. 4.3 of the
main paper.

E.1 Data Preprocessing: Quantization of HOG/HOF descriptors at sparse interest points

We follow the same preprocessing steps as [2] to obtain a “bag-of-features” time series representa-
tion of the Kitchen videos. We use existing spatio-temporal interest points (STIP) code [3] to detect
interest points and obtain histogram of gradients (HOG) and histogram of optical flow (HOF) de-
scriptors, which we concatenate together. For each version of the Kitchen dataset (small: 30 videos
of 3 recipes, or big: 126 videos from 5 recipes), we build a codebook from these descriptors with
V = 1000 codewords using the K-means algorithm. Each STIP is then mapped to the nearest code-
word, providing a standard “bag of words” representation [4]. To represent videos as discrete time
series, we choose a temporal bin-width w (in seconds for invariance to frame rate), divide video i
into Ti bins of width w, and count the number of occurrences of each codeword across all STIPs
within each bin. The parameter w indirectly influences the time-scale of the learned dynamics.

We set w = 0.5 seconds on the small dataset, to match the previous settings in [2]. On the big
dataset, we set w = 1 second, which we find to be more appropriate timescale for the behaviors of
interest, since each video is several minutes long.

E.2 Hyperparameter Settings

As in [2], we find that fixing hyperparameters provides reasonable performance for our inference al-
gorithm. We set BP hyperparameters γ = 2 and β = 1, to encourage moderate sharing and limit the
creation of too many states. Without setting γ small, we find the sampler creates an over-abundance
of states that does not lead to sensible human interpretation. We further set HMM parameters to
α = 2 and κ = 10α, which leads to reasonable stickyness in behavior transitions.

For the small dataset of 30 videos shown in Fig. 5, we set the hyperparameter of the Dirichlet prior
on multinomial emissions θ to λ = 1 (similar to [2]’s 0.75). On the large dataset, we find that the
quantized multinomial likelihood leads to an over-abundance of behaviors with λ = 1, and so we
set λ = 10 to encourage the model to find a compact set of behaviors, which still ends up containing
73 features in all.

E.3 Key Frames of Activity Discovery on 126 Kitchen Sequences

Fig. E.1 shows example frames from 8 representative behaviors found by our SM+DD inference
algorithm, out of the total collection of 73 behaviors. Each key frame is taken from a different
sequence. We selected key frames from the longest contiguous segments assigned to each behavior,
filtering out segments with no observed STIPs in more than half of all timesteps.

These key frames indicate that the sampler does find coherent and intuitive behaviors, despite the
fact the STIPs have well-known weaknesses as video representation [2]. Interestingly, the sampler
finds at least two distinct styles of stirring, which are used most often in Brownie videos but also
sometimes in Eggs videos. Examining the data indicates that these motions are truly different: as in
[2], these behaviors seem to correspond to different styles of stirring the bowl. Thus, we should not
expect our SM moves to merge these into one behavior.

E.4 Commentary on Behavior Assignment Map (Fig. 6 in main paper)

Fig. 6 of the main paper shows the usage patterns of a handful of manually selected representative
behaviors over time across all videos in the corpus. To make this figure, we discretize each video
into 50 blocks, and count the number of timesteps within each block assigned to each feature. If a

7

Light Switch Open Fridge

Stir Bowl 1 Grate Cheese

Stir Bowl 2 Pour Bowl

Slice/Chop Flip Omelette

Figure E.1: Qualitative analysis of 126 Kitchen vides: 8 representative behaviors from the set of 73
recovered by the BP-HMM with SM+DD moves. Best viewed in color on a computer screen.

behavior has at least two detections in a particular block, we fill in that block with the appropriate
color. We disregard timesteps that do not have any observed STIPs, as these assignments are not
likelihood-driven and thus not informative.

A careful reader will observe that within each recipe category, some behavior usage is not uniformly
distributed. Both ”flip omelette” and ”chop vegetables” behaviors occur mostly in the bottom half
of the displayed listing of Eggs and Salad videos respectively. Examining the data indicates that this
usage pattern is particular to the way in which this data was originally collected. The ”flip omelette”
behavior is exclusive to sequences in which actors use a spatula (rather than a fork) to perform the
flipping. This tool likely has more distinct motions and more distinct HOG gradient features. The
”slice/chop” behavior is particular to sequences in which actors use a large knife and cut carrots and
cucumbers on a cutting board, while some earlier trials had actors just slicing in their hands with a
butter knife. Inspection indicates that spatula and cutting board tools were more readily available in
motion capture trials collected at later dates, perhaps because instructions to subjects were revised
to encourage use of better tools. This explains the non-uniformity in usage within Fig. 6, since we
display each category in increasing order of subject ID number, which is directly related to time of
collection.

References
[1] E. B. Fox, E. B. Sudderth, M. I. Jordan, and A. S. Willsky. Sharing features among dynamical systems

with beta processes. In NIPS, 2010.

[2] M. C. Hughes and E. B. Sudderth. Nonparametric discovery of activity patterns from video collections. In
CVPR Workshop on Perceptual Organization in Computer Vision, 2012.

[3] I. Laptev, M. Marszałek, C. Schmid, and B. Rozenfeld. Learning realistic human actions from movies. In
CVPR, 2008.

[4] H. Wang, M.M. Ullah, A. Kläser, I. Laptev, and C. Schmid. Evaluation of local spatio-temporal features
for action recognition. In BMVC, 2009.

8

