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Abstract

Supervisory signals can help topic models discover low-dimensional data repre-
sentations that are more interpretable for clinical tasks. We propose a framework
for training supervised latent Dirichlet allocation that balances two goals: faith-
ful generative explanations of high-dimensional data and accurate prediction of
associated class labels. Existing approaches fail to balance these goals by not
properly handling a fundamental asymmetry: the intended task is always predicting
labels from data, not data from labels. Our new prediction-constrained objective
trains models that predict labels from heldout data well while also producing good
generative likelihoods and interpretable topic-word parameters. In a case study on
predicting depression medications from electronic health records, we demonstrate
improved recommendations compared to previous supervised topic models and
high-dimensional logistic regression from words alone.

1 Introduction

Patient history in electronic health records (EHR) can be represented as counts of predefined concepts
like procedures, labs, and medications. For such datasets, topic models such as latent Dirichlet
allocation (LDA, [2]) are popular for extracting insightful low-dimensional structure for clinicians [15;
5]. A natural goal is to use such low-dimensional representations as features for a specific supervised
prediction, such as recommending drugs to a patient with depression. Many general-purpose efforts
have attempted to train supervised topic models [22; 11; 3], including the well-known supervised
Latent Dirichlet Allocation (sLDA, [14]).

However, a recent survey of healthcare prediction tasks [8] finds that many of these approaches
have little benefit, if any, over standard unsupervised LDA for heldout predictions. In this work, we
expose and correct several deficiencies in these previous formulations of supervised topic models. We
introduce a learning objective that directly enforces the intuitive goal of representing the data in a way
that enables accurate downstream predictions. Our objective acknowledges the inherent asymmetry of
prediction tasks: clinicians want to predict medication outcomes given medical records, not medical
records given outcomes. Approaches like sLDA that optimize the joint likelihood of labels and words
ignore this crucial asymmetry. Our new prediction-constrained (PC) objective for training latent
variable models allows practitioners to effectively balance explaining abundant count data while
ensuring high-quality predictions of labels from this data. We hope achieving strong gains in this
predictive framework will pave the way for causal latent variable models for drug recommendation.

This short paper was accepted at the NIPS Machine Learning for Health workshop (NIPS ML4H 2017).
A longer tech report with further experiments [9] is available online: https://arxiv.org/abs/1707.07341.
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2 Limitations of Existing Topic Models
Supervised LDA. The sLDA model learns from a collection of D documents. Each document d is
represented by counts of V discrete words, xd ∈ ZV+ . In the EHR context, these are often ICD-9 or
ICD-10 codes, such as “F33.0: Major depressive disorder, recurrent, mild”. For our supervised case,
each document (patient) d also has a binary label yd ∈ {0, 1}, indicating whether a medication was
successful. Both words xd and label yd are generated by a document-specific mixture of K topics:

xd|πd, φ ∼ Mult(xd |
∑K
k=1 πdkφk, Nd), yd|πd, η ∼ Bern(yd | σ(

∑K
k=1 πdkηk)). (1)

The key latent variable is πd, the document-topic probability vector, with prior πd ∼ Dir(α).
The trainable parameters are topic-word probabilities φk and regression weights ηk (we fix α for
simplicity). Let σ(z) = (1 + e−z)−1 be the logit function, and Nd the observed size of document d.

There are a host of objectives and inference methods for supervised LDA, including [14; 19; 21; 22].
A key contribution of this work is identifying a fundamental shortcoming of all these objectives: they
do not train topic models that are also effective at label prediction. This myriad of methods, and
their shortcomings, arise because of model mispecification. If our count data truly came from a topic
model, and those topics truly led to good label predictions, then even unsupervised topic models
would do well. Trouble arises when we desire the dimensionality reduction provided by a topic model
for interpretability or efficiency, but the data were not produced by the LDA generative process.
Limitations of Joint Bayesian or Maximum-Likelihood Training of the sLDA Model. Super-
vised LDA [14] and related work [19; 20; 16] assumes a graphical model in which the target label
yd can be viewed as yet another output of document-topic probabilities πd. When the number of
counts in xd is significantly larger than the cardinality of yd, as is typical in practice, the likelihood
associated with xd will be much larger in magnitude than the likelihood associated with yd. That is,
the correct application of Bayesian inference within this model will essentially ignore the task of
predicting the target yd. Thus, [8] finds that for large K, sLDA is no better than LDA.
Limitations of Label Replication. The Power-sLDA approach of Zhang and Kjellström [21]
suggests improving sLDA’s predictions by artificially replicating the label yd multiple times. Standard
Bayesian methods use both data xd and replicated labels yd to infer the document-topic probabilities
πd while training. However, the predictive posterior p(πd | xd) may be very different from the
training posterior p(πd | xd, yd). Put another way, label replication strengthens the connection
between πd and yd, but it does not strengthen the task we care about: prediction of yd from xd alone.
Figure B.1 in the appendix demonstrates this issue: regardless of the replication level, when the
model is misspecified Power-sLDA fails to find topics that are good for predicting yd from xd.
Other popular sLDA objectives reduce to label replication. Posterior regularization (PR)-based
methods [4; 6] enforce explicit performance constraints on the posterior. The MedLDA approach of
Zhu et al. [22, 23, 24] is instead derived from a maximum entropy discrimination framework, and
uses a hinge loss to penalize errors in the prediction of yd. In extended derivations in our longer tech
report [9], we show that both MedLDA and PR training objectives can be written as instances of label
replication, and thus inherit Power-sLDA’s failure to generalize well.
Limitations of Fully Discriminative Learning. Unlike the above approaches, backpropagation
supervised LDA (BP-sLDA, [3]) focuses entirely on the prediction of yd. Chen et al. [3] do handle
the direct prediction of yd from xd, but no term in their objective forces topics to accurately model the
data xd at all. Our objective can be seen as a principled generalization that balances the explanation
of data xd (which [3] ignores) and prediction of targets yd. Our improved generative modeling leads
to more interpretable topic-word distributions.

3 Prediction-Constrained sLDA

We propose a novel, prediction-constrained (PC) objective that explicitly encodes the asymmetry
of the discriminative label prediction task. In particular, we ensure that topics learned during joint
training can also be used to make accurate predictions about y given x, by solving:

min
φ,η
−
[∑D

d=1 log p(xd | φ, α)
]

subject to −
∑D
d=1 log p(yd | xd, φ, η, α) ≤ ε. (2)

The scalar ε is the highest aggregate loss we are willing to tolerate. There are many variations on this
theme; for example, one could instead use a hinge loss as in Zhu et al. [22]. The structure of Eq. (2)
matches the goals of a domain expert who wishes to explain as much of the data x as possible, while
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still making sufficiently accurate predictions. We recommend adding standard regularization terms
(log priors for φ and η), though we leave these out to keep notation focused on our contributions.

Applying the Karush-Kuhn-Tucker conditions, Eq. (2) becomes an equivalent unconstrained problem:

min
φ,η
−
∑D
d=1[log p(xd|φ, α) + λε log p(yd|xd, φ, η, α)] (3)

For any prediction tolerance ε, there exists a scalar multiplier λε > 0 such that the optimum of Eq. (2)
is a minimizer of Eq. (3). The relationship between λε and ε is monotonic but has no analytic form.
We must search over one-dimensional penalties λε for an appropriate value.

While our PC objective is superficially similar to Power-sLDA [21] and MedLDA [22], it is distinct:
the multiplier λε rescales the log-posterior log p(yd | xd), while label-replication rescales the log-
likelihood log p(yd | πd). By “replicating” the entire posterior, rather than just the link between latent
and target variables, our PC objective achieves the asymmetric goal of predicting yd from xd alone.

Computing p(xd | φ) and p(yd | xd, φ, η) requires marginalizing πd over the simplex. However,
these integrals are intractable. To gain traction, we first contemplate instantiating πd:

minπ,φ,η −
∑D
d=1[ log p(πd|α) + log p(xd|πd, φ) + λε log p(yd|πd, η)] (4)

As discussed above, solutions to this objective would lead to weighted joint training and its
symmetry problems. Since we wish to train under the same asymmetric conditions needed at
test time, where we have xd but not yd, we instead fix πd to a deterministic mapping of the
words xd to the topic simplex. Specifically, we fix to the maximum a posteriori (MAP) solution
πd = argmaxπd∈∆K log p(πd|xd, φ, α), which we write as an embedding: πd ← MAPφ,α(xd).

Our chosen embedding can be seen as a feasible approximation to the posterior p(πd|xd, φ, α). This
choice respects the need to use the same embedding of observed words xd into low-dimensional πd
in both training and test scenarios. We can now write our tractable training objective for PC-sLDA:

−
∑D
d=1[ log p(MAPφ,α(xd)|α) + log p(xd|MAPφ,α(xd), φ) + λε log p(yd|MAPφ,α(xd), η)] (5)

While this objective is similar to BP-sLDA [3], the key difference is that our method balances the
generative and discriminative terms via the multiplier λε. In contrast, Chen et al. [3] consider only
fully unsupervised (labels y are ignored) or fully supervised (the distribution of x is ignored) cases.

MAP via Exponentiated Gradient. The document-topic MAP problem for unsupervised LDA is
maxπd∈∆K log p(πd|xd, φ, α) [17]. It is convex for α ≥ 1 and non-convex otherwise. For the convex
case, we start from uniform probabilities and iteratively do exponentiated gradient updates [10]:

init: π0
d ← [

1

K
. . .

1

K
], repeat: πtdk ←

ptdk∑K
j=1 p

t
dj

, ptdk = πt−1
dk ◦ eν∇ log p(πt−1

d |xd). (6)

With small enough steps ν > 0, exponentiated gradient converges to the MAP solution. We define
our embedding MAPφ,α(xd) to be the deterministic outcome of T iterations of Eq. (6). T ≈ 100 and
ν ≈ 0.005 work well. The non-convex case can be solved similarly after reparameterization [18; 12].

Learning via gradient descent. Our entire objective function, including the MAP estimation
procedure, is fully differentiable with respect to the parameters φ, η. Thus, modern gradient descent
methods like Adam may be applied to estimate φ, η from observed data. We have developed Python
implementations using both Autograd [13] and Tensorflow [1], which we will release to the public.
Hyperparameter selection. The key hyperparameter for our PC-sLDA algorithm is the multiplier
λε. For topic models, λε typically needs to scale like the number of tokens in the average document,
though it may need to be larger depending on tension between the unsupervised and supervised terms
of the objective. In our experiments, we try logarithmically spaced values λε ∈ {10, 100, 1000, . . .}
and select the best using validation data, although this requires training multiple models. This cost can
be somewhat mitigated by using the final parameters at one λε value to initialize the next λε, although
this may not escape to new preferred basins of attraction in the overall non-convex objective.

4 Antidepressant Case Study

We consider predicting which subset of 11 common antidepressants will be successful for a pa-
tient with major depressive disorder given a bag-of-words representation xd of the patient’s elec-
tronic health record (EHR). These are real deidentified data from tertiary care hospitals, split into
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PC sLDA ηk = +0.3
cpt 99213 0.137 office_visit >=15 min
cpt 99211 0.037 office_visit >=05 min
cpt 99214 0.030 office_visit >=25 min
icd9 v700 0.029 routine_physical_exam
cpt 85027 0.021 complete_blood_ct_test
cpt 36415 0.021 routine_blood_collection
icd9 78079 0.015 other_malaise_&_fatigue
-----
cpt 87880 0.987 test_for_strep_throat
icd9 70583 0.982 hidradenitis_skin_cond
cpt 99403 0.963 preventive_counsel >=45 min
icd9 v031 0.963 need_for_typhoid_vaccine

Gibbs LDA ηk = -0.6
cpt 99213 0.083 office_visit >=15 min
cpt 99211 0.045 office_visit >=05 min
icd9 v700 0.026 routine_physical
cpt 99214 0.025 office_visit >=25 min
cpt 36415 0.015 complete_blood_ct_test
cpt 99212 0.015 office_visit >=10 min
cpt 90658 0.013 flu_vaccine

cpt 90733 1.000 meningococcal_vaccine
cpt 90713 1.000 poliovirus_vaccine
cpt 99393 0.999 routine_physical_age5 -11
cpt 90691 0.999 typhoid_vaccine

Figure 1: Antidepressant prediction. Left: Performance as number of topics increases. We show heldout negative
log likelihood (generative, lower is better) and heldout AUC (discriminative, higher is better) for the average of
all 11 drugs as well as two specific drugs (one SNRI and one SSRI). We use our own implementation of BP-sLDA
for this multiple binary label prediction task. Both PC-sLDA and BP-sLDA results use runs initialized from
Gibbs. While BP-sLDA exhibits severe overfitting, our PC-sLDA improves on the baseline Gibbs predictions
reliably. Right: Interpretation of topic #11 of K = 25 for both Gibbs-LDA and our PC-sLDA initialized from
Gibbs. We show the regression coefficient ηk for this topic when predicting patient success with citalopram. The
top list is ranked by p(word|topic); the bottom list by p(topic|word), indicating potential anchor words. The
original Gibbs topic is mostly about routine preventative care and vaccination. PC sLDA training evolves the
topic to emphasize longer duration encounters focused on counseling, with a few unfocused terms.

29774/3721/3722 documents (one per patient) with V = 5126 EHR codewords (diagnoses/proce-
dures/medicines). The appendix gives details on data preprocessing. Our results are:

PC-sLDA has better label prediction. Overall, antidepressant recommendation is challenging even
for nonlinear classifiers, so we do not expect AUC scores to be very high. However, our PC-sLDA
is competitive, beating Gibbs LDA and logistic regression at average prediction across 11 drugs in
Fig. 1 when given enough topics. BP-sLDA does well with few topics, but overfits with too many.

PC-sLDA recovers better heldout data likelihoods than BP-sLDA. Fig. 1 shows trends in negative
log likelihood on heldout data (lower is better). As expected, unsupervised Gibbs-LDA consistently
achieves the best scores, because explaining data is its sole objective. BP-sLDA is consistently poor,
having per-token likelihoods about >1.0 nats higher than others. These results show that the solely
discriminative approach of BP-sLDA cannot explain the data well. In contrast, our PC-sLDA can
capture essential data properties while still predicting labels accurately.

PC-sLDA’s learned topic-word probabilities φ are interpretable for the prediction task. We
emphasize that our PC training estimates topic-word parameters φ that are distinct from unsupervised
training and more appropriate for the label prediction task. Fig. 1 shows that PC-sLDA initialized
from Gibbs indeed causes an original Gibbs topic to significantly evolve its regression weight ηk
and associated top words. The original Gibbs topic covers routine outpatient preventative care and
vaccination. The evolved PC-sLDA topic prefers long-duration primary care encounters focused on
behavior change (“counseling”). With clinical collaborators, we hypothesize that this more focused
topic leads to a positive ηk value because the drug in question (citalopram/Celexa) is often a treatment
of choice for patients with uncomplicated MDD diagnosed and treated in primary care.

5 Conclusion

We have presented a new training objective for topic models that can effectively incorporate supervised
labels to improve parameter training, even when the model is misspecified. Future work can explore
this same PC objective with improved models for observational health records that account for
important factors such as patient demographics, temporal evolution, or causality.
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A EHR dataset description

We study a cohort of hundreds of thousands patients drawn from two large academic medical centers
and their affiliated outpatient networks over a period of several years. Each patient has at least
one ICD9 diagnostic code for major depressive disorder (ICD9s 296.2x or 3x or 311, or ICD10
equivalent). Each included patient had an identified successful treatment which included one of 25
possible common anti-depressants marked as “primary” treatments for major depressive disorder by
clinical collaborators. We labeled an interval of a patient’s record “successful” if all prescription
events in the interval used the same subset of primary drugs, the interval lasted at least 90 days, and
encounters occurred at least every 13 months. Applying this criteria, we identified 64431 patients
who met our definition of success. For each patient, we extracted a bag-of-codewords xd of 5126
possible codewords (representing medical history before any successful treatment) and binary label
vector yd, marking which of 11 prevalent anti-depressants (if any) were used in known successful
treatment.

Extracting data xd. For each patient with known successful treatment, we build a data vector xd
to summarize all facts known about the patient in the EHR before any successful treatment was given.
Thus, we must confine our records to the interval from the patient’s first encounter to the last encounter
before any of the drugs on his or her successful list were first prescribed. To summarize this patient’s
interval of “pre-successful treatment”, we built a sparse count vector of all procedures, diagnoses,
labs, and medications from the EHR which fit within the interval (22,000 possible codewords). By
definition, none of the anti-depressant medications on the patient’s eventual success list appear in xd.
To simplify, we reduced this to a final vocabulary of 5126 codewords that occurred in at least 1000
distinct patients. We discard any patients with fewer than 2 tokens in xd (little to no history).

Extracting labels yd. Among the 25 primary drugs, we identified a smaller set of 11 anti-
depressants which were used in “successful treatment” for at least 1000 patients. The remaining 15
primary drugs did not occur commonly enough that we could accurately access prediction quality
(build large enough heldout sets). Our chosen list of drugs to predict are: nortriptyline, amitriptyline,
bupropion, fluoxetine, sertraline, paroxetine, venlafaxine, mirtazapine, citalopram, escitalopram, and
duloxetine. Because these drugs can be given in combination, this is a multiple binary label problem.
Future work could look into structured prediction tasks.

B Toy Bars Case Study

To study tradeoffs between models of p(x) and p(y|x), we built a toy dataset that is deliberately
misspecified: neither the unsupervised LDA maximum likelihood solution nor the standard sLDA
joint likelihood solution performs much better than chance at label prediction. We look at 500
training documents, each with V = 9 possible vocabulary words that can be arranged in a 3-by-3
grid to indicate some bar-like co-occurrence structure. Each binary label yd is unrelated to the bar
structure, but is unambiguously indicated by the top-left word. We visualize some documents and
their associated labels in the top row of Fig. B.1.

We compare our proposed PC sLDA training procedure with sevral competitors (MED sLDA [22],
Gibbs unsupervised LDA [7], BP sLDA [3], etc.). We also include a method that maximizes the joint
likelihood log p(x, y) with different amounts of label replication. We call this method ML-sLDA
with replication value λ. The special case of λ = 1 is standard sLDA, while the case of λ � 1 is
known as Power sLDA [21].

Each algorithm is run to convergence on training data, and its best parameters – topic-word prob-
abilities φ and regression weights η – are chosen to minimize method-specific training loss. Each
method’s best solution is then located on a 2-dimensional fitness landscape: the x-axis is negative log
likelihood of data x averaged per token (lower is better) and y-axis is the negative log likelihood of
labels y averaged per document (lower is better). These averages are computed on the training set.
We show these fitness scores under two possible modes for estimating each document-topic vector
πd. Train mode computes the joint likelihood MAP estimate maxπd

log p(πd|xd, yd, φ, η, α). Predict
mode computes the data-only MAP estimate maxπd

log p(πd|xd, φ, α). This distinction highlights
the key difference between PC-sLDA with high λ, which deliberately trains parameters φ, η to be
good at prediction, and alternatives like maximum likelihood with label replication (ML with λ > 1),
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which trains models that do well in training mode but fail miserably in a predictive setting (even on
the training set). We further see that methods that purely optimize label prediction such as BP-sLDA
achieve reasonable prediction scores but terrible data likelihood scores.

The visualized parameters show an important trend: Our PC-sLDA with λ ≥ 10 is the only method
to use just one topic to explain the signal word. Thus, it is the only method to reach the sweet spot of
good y|x predictions and good x explanations. Gibbs sensibly finds 4 bars and places the signal word
slightly in each one, as does MED-sLDA and Power sLDA.
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Figure B.1: 3 × 3 bars task: advantages of PC training under misspecification. We compare several training
procedures to see which can simultaneously model the bar-like co-occurrence structure while making accurate
binary label predictions. Top rows: Example labeled training documents: the 3×3 heatmap shows the word
count vector xd, and the caption indicates the label yd. Colormap chosen to highlight the top-left-corner symbol
that, when it appears just once, perfectly signals the document belongs to the positive class (yd = 1). Remaining
vocabulary symbols in each document are drawn from one or two of 4 possible horizontal and vertical “bar”
topics. These symbols, when non-zero, have much higher counts than the top-left signal word. Middle rows:
Visualization of the topic-word probabilities for the best K = 4 topic model trained by each method. Colormap
has a logarithmic scale to show how the rare signal word is explained. Bottom row: Location of each method’s
estimated parameters on the fitness landscape where x-axis is generative model training loss, and y-axis is
prediction task loss. The lower left corner is the ideal position.
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