

The Tufts fNIRS Mental Workload Dataset & Benchmark for **Brain-Computer Interfaces that Generalize**

Zhe Huang*¹, Liang Wang*¹, Giles Blaney², Christopher Slaughter³, Devon McKeon¹, Ziyu Zhou¹, Robert Jacob*1, and Michael C Hughes*1

1 Dept. of Computer Science, Tufts University 2 Dept. of Biomedical Engineering, Tufts University 3 Dept. of Computer Engineering, Univ. of Maryland Baltimore County

Dataset: https://tufts-hci-lab.github.io/code and datasets/fNIRS2MW.html

Code: https://github.com/tufts-ml/fNIRS-mental-workload-classifiers

AB_PHI_O

CD_I_0

CD PHI O

_ CD_I_DO

— CD_PHI_DO

AB_I_DO AB_PHI_DO

Overview

Goal:

Enable everyday BCI by building classifiers that predict mental state using passive fNIRS reading (e.g., 30-second window)

Barriers:

- 1. Lack of large-scale open-access fNIRS dataset
- 2. Lack of standardized training and evaluation protocols

Contributions:

- 1. Released the largest open-access fNIRS dataset
- 2. Proposed standardized training and evaluation protocols
- 3. Provided extensive benchmark results

Possible Future Uses

- 1. Sliding-window time series classification
- 2. Domain generalization
- 3. Fairness in time series classification

Dataset

68 subjects. Largest open-access fNIRS dataset

Time Series Classification Task Input: short window of multivariate fNIRS Output: mental workload intensity level (low vs high)

Features: fNIRS measurements

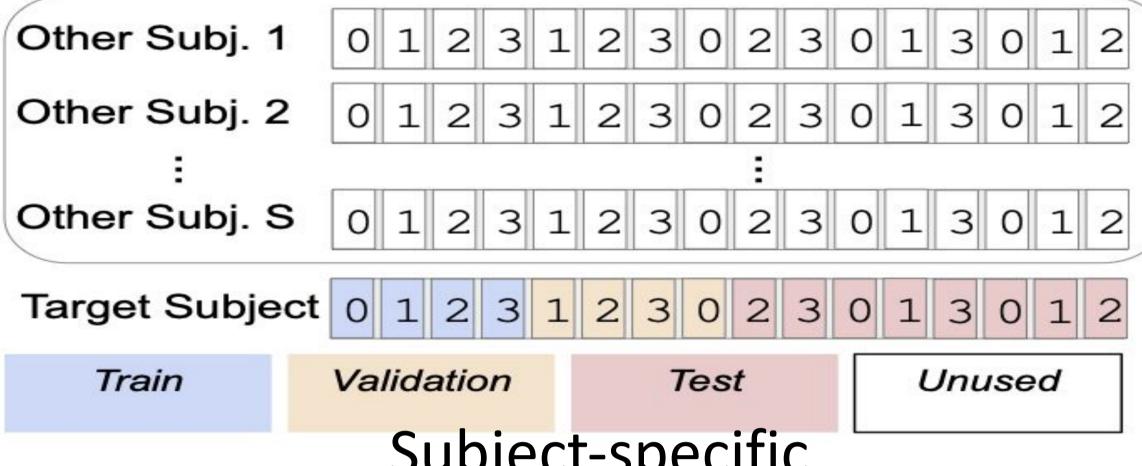
- •8 channels at 5.2 Hz
- Preprocessing to remove artifacts

Labels: Mental workload intensity

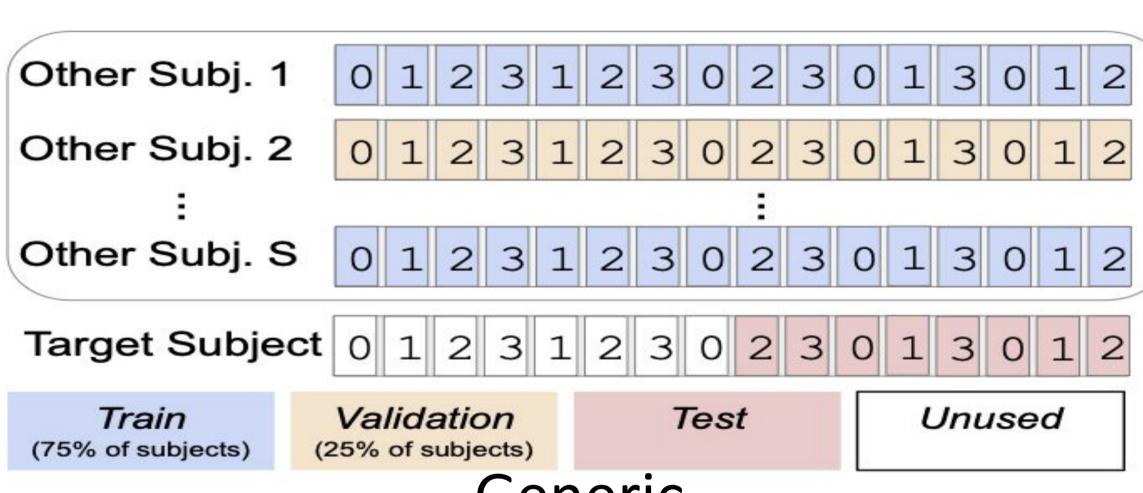
•n-back task: standard experiment for measuring memory workload

Other metadata are also included:

Race, Sex, Age, Handedness etc


(a) A subject wearing the fNIRS headband, placed by the operator before each experiment began.

o ld -3		1000 2000	0 3000	4000	5000 600	0 7000	
	Ü	1000 2000	tin		3000	7000	
		Asian	White	Latin	Black	Pac. Isl.	other
race		32	27	3	2	1	3
		M	F	other	decline		
gender		26	39	2	1		
		right	left	unk.			
handedness		64	3	1			
		min.	max.	mean	std		
age		18.0	44 0	21.71	4.01		


(b) Demographics of our eligible cohort (n=68).

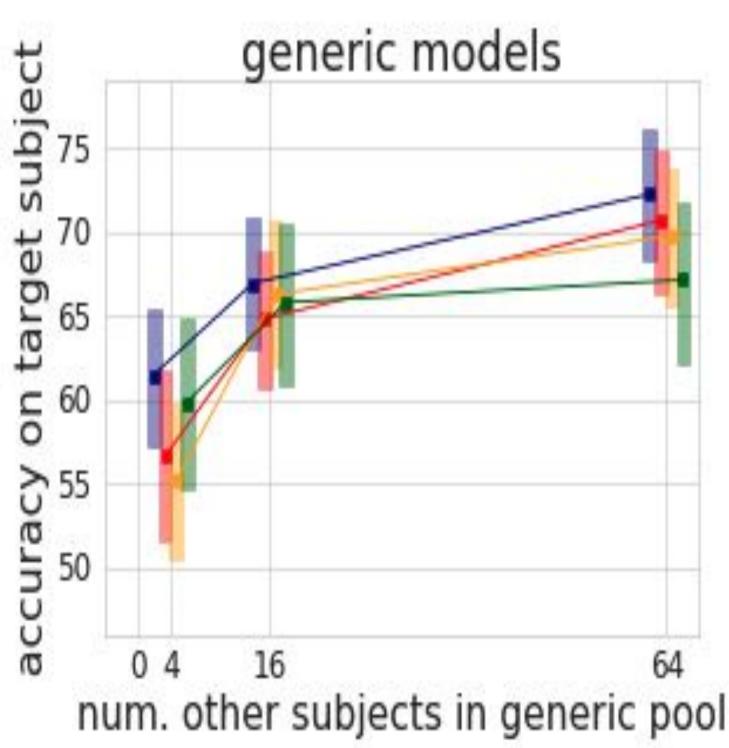
sleep last night (hr.)

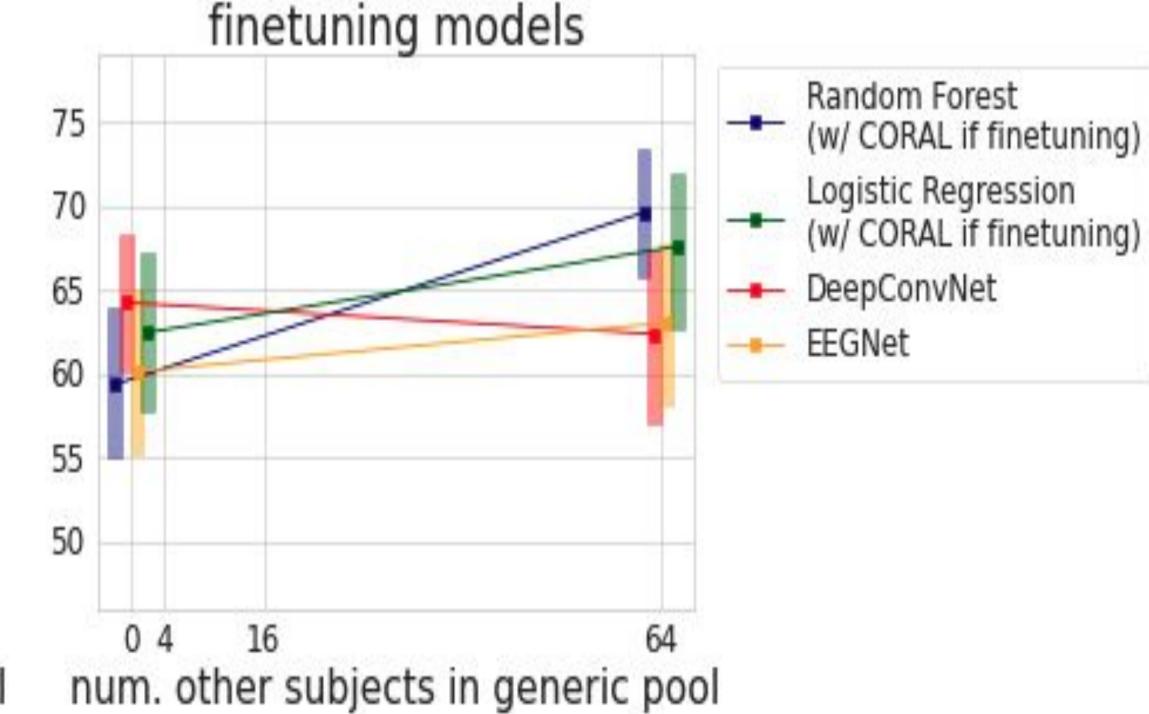
Training & Evaluation Protocols

Subject-specific

Generic

Generic + Fine tuning


Audit of Fairness across Subpopulations


Our large dataset with demographic labels enables audits of generalization across subgroups

est Group R	F Accuracy	EEGNet Accuracy			
White (6) 77.44	(66.70 - 87.31)	67.69	(54.11, 80.87)		
URM (6) 71.43	(60.60 - 82.14)	62.41	(48.21, 76.31)		
Asian (6) 67.91	(59.01 - 77.56)	64.14	(53.81, 75.98)		
White (6) 71.29	(59.83 - 81.77)	64.98	(54.76, 75.01)		
	White (6) 77.44 Asian (6) 74.18 URM (6) 71.43 Asian (6) 67.91 White (6) 71.29	White (6) 77.44 (66.70 - 87.31) Asian (6) 74.18 (63.49 - 85.19) URM (6) 71.43 (60.60 - 82.14) Asian (6) 67.91 (59.01 - 77.56) White (6) 71.29 (59.83 - 81.77)	st Group RF Accuracy EEG White (6) 77.44 (66.70 - 87.31) (67.69) Asian (6) 74.18 (63.49 - 85.19) (64.88) URM (6) 71.43 (60.60 - 82.14) (62.41) Asian (6) 67.91 (59.01 - 77.56) (64.14) White (6) 71.29 (59.83 - 81.77) (64.98) URM (6) 67.39 (57.86 - 77.44) (65.22)		

Benchmark Results

- Generic classifiers benefit noticeably from larger training set
- Generic classifiers outperform both subject-specific and fine-tuning classifiers
- Substantial variation exists across users

