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Abstract

Semi-supervised learning (SSL) promises gains in accuracy compared to training
classifiers on small labeled datasets by also training on many unlabeled images.
In real medical applications, unlabeled images are often uncurated and thus pos-
sibly different from the labeled set in represented classes. Unfortunately, modern
deep SSL often makes accuracy worse when given uncurated unlabeled data. Re-
cent remedies suggest filtering approaches that detect out-of-distribution (OOD)
unlabeled examples and then discard or downweight them. Instead, we view all
unlabeled examples as potentially helpful. We introduce a procedure called Fix-
A-Step that can improve heldout accuracy of common deep SSL methods despite
lack of curation. Our first insight is that unlabeled data, even OOD, can usefully
inform augmentations of labeled data. Our second innovation is to modify gra-
dient descent updates to prevent following the multi-task SSL loss from hurting
labeled-set accuracy. Though our method is simpler than alternatives, we show
consistent accuracy gains on a common CIFAR-10 benchmark across all levels of
contamination. We further create a new medical benchmark for robust SSL called
Heart2Heart1, where the task is recognizing the view type of ultrasound images
of the heart. On Heart2Heart, Fix-A-Step can learn from 353,500 truly uncurated
unlabeled images to deliver gains that generalize across hospitals.

1 Introduction

Semi-supervised learning (SSL) [30, 26] is a promising approach to medical imaging problems where
labeled images are expensive to acquire while unlabeled images are more affordable. SSL methods
can train a classifier from the union of a small labeled dataset and a large unlabeled dataset, often
claiming to deliver accuracies on par with a conventionally-trained classifier given many more labels.

Recent SSL developments have achieved excellent results on standard benchmarks such as SVHN [20]
or CIFAR-10 [13]. Unfortunately, these results are too optimistic, since the unlabeled set are carefully
curated by dropping known labels. In real tasks, the unlabeled set is often uncurated due to limited
annotation time, and thus might differ from the labeled set in terms of represented classes or class
frequencies, among other differences. Recent work [21] shows that off-the-shelf SSL performance
deteriorates when unlabeled contents differ in label composition from the labeled set.

Many recent SSL methods try to be robust to uncurated unlabeled data [12, 7, 28, 5, 23]. This line
of work is sometimes called “safe” or “open-set” SSL. Broadly, most of these methods follow the
same intuitive direction: learn to identify examples in the unlabeled set that are out-of-distribution
(OOD), remove or downweight these, and train on the remainder. However, we find this OOD-removal
paradigm neglects the potential value of OOD samples, and thus might limit prediction quality.

1Code for Fix-A-Step SSL and our Heart2Heart benchmark: https://github.com/tufts-ml/fix-a-step
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This study makes 3 contributions toward more robust SSL methods. First, we challenge the dominant
paradigm that handles uncurated unlabeled sets by filtering out OOD examples. Our experiments
suggest that even perfect OOD filtering (which is unrealistic in practice) does not perform well.
Instead, we argue for a new paradigm: OOD images from uncurated unlabeled sets are potentially
helpful. Second, following this paradigm we introduce a new SSL training procedure called Fix-A-
Step designed for robust SSL classification even when given uncurated unlabeled sets. Our method
improves predictions on better than alternative methods while being substantially simpler. Finally, we
offer a new SSL benchmark using real uncurated medical images that can assess cross-hospital
generalization. Using three inter-operable open-access datasets TMED [9, 10], CAMUS [15], and
Unity [8], we pursue a clinically-relevant problem: recognizing the view type of an echocardiogram
image of the heart. Future methods for learning from limited data can follow our reproducible code
(link on page 1). An extended manuscript describing this work in more detail is available [11].

2 Method

The dominant approaches for semi-supervised training of deep image classifiers today continue
to modify standard objectives for discriminative neural nets by adding a regularization term using
unlabeled data [19, 24]. This approach trains a neural net via multi-task optimization:

minw
∑

x,y∈DLℓL(y, fw(x)) + λ
∑

x∈DU ℓU (x;w) (1)

Let w denote weight parameters, x input features, y labels, and f the probabilistic classifier output of
the network. The labeled-set loss ℓL is cross entropy; the unlabeled-set loss ℓU is method-specific.

Our proposed method, Fix-A-Step, follows this multi-task approach, with two key modifications to
how parameters are updated during gradient descent, detailed below. Fix-A-Step can “fix” (improve
robustness to uncurated data) many common SSL methods with different losses ℓU .

First, in the augmentation phase our insight is the unlabeled set might be helpful for creating
useful augmentations, even when uncurated, by injecting realistic diversity (motivating example
in App. A). Inspired by MixMatch [1], we transform each labeled pair (x, y) using another pair
(x′, y′) drawn either from the labeled set or the unlabeled set (if only x′ is known we apply soft
pseudo-label predictions for y′, see Alg. D.2). Given x, y and x′, y′, we build a new labeled pair x̃, ỹ
via MixUp [29] interpolation (see Alg. D.3), then use that pair to compute the labeled loss. While the
success of MixUp for standard SSL via MixMatch [1] is widely known, it is under-explored whether
this technique is beneficial with uncurated data. We further show that MixMatch alone is not enough
(see Fig. 1).

Second, in the step direction phase, we prioritize the labeled loss in parameter updates, only using
the unlabeled loss if it improves the labeled loss. At each batch, we compute two gradient vectors,
one for each term in the loss: Let gL = ∇wℓ

L and let gU = ∇wℓ
U . The update for weights w is then

w ←
{
w − ϵ(gL + λgU ) if

∑
d g

L
d g

U
d > 0

w − ϵgL otherwise.
(2)

where ϵ > 0 is a step size. In the top case, we do the standard steepest descent update that minimizes
the two-term SSL objective in Eq. (1). In the bottom case, we perform an alternative update, using
only the labeled-term gradient. This two-case construction tries to ensure that SSL learning does not
harm labeled set performance. Formally, we can show that each possible update in Eq. (2) adjusts
weights w in a descent direction for the labeled set loss at the current minibatch (proof in E). Our step
modification phase is inspired by the Transfer-Interference trade-off [22, 17] in continual learning.
Similar ideas have also been explored in multi-task learning [6] where the goal is maximize the
performance of a “main” task no matter what, while using an “auxiliary” task if helpful.

Geometric intuition Recall that two vectors gL and gU have positive inner product (top case) only if
the angle between the vectors is below 90 degrees. At angles larger than 90 (bottom case), gL and gU

are pointing in different directions, and minimizing the unlabeled loss would hinder the labeled loss.
In SSL, we care most about (heldout) classifier accuracy. Any improvement on the unlabeled loss is
useful only if it helps improve accuracy. When gU points in a different direction than gL, our update
ignores the unlabeled gradient and updating parameters using only gL.
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Figure 1: Accuracy on CIFAR-10 6 animal task. Accuracy on test images of animals (y-axis) as unlabeled set
mismatch (percentage of non-animal classes represented, x-axis) increases. Training details in App C.1.
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Figure 2: Balanced accuracy for echocardiogram view classification (Heart2Heart benchmark). Left:
Evaluation on heldout TMED-2 images. Center: Evaluation on Unity dataset (17 sites in the UK). Right:
Evaluation on CAMUS dataset (1 site in France). Methods are trained using only TMED-2. Details in App C.

3 Experimental Results

CIFAR-10 Experiments. We evaluate on CIFAR-10 “6-animal” task designed by [21]. We build
a labeled set of the 6 animal classes (dog, cat, horse, frog, deer, bird) in CIFAR-10, across two
training set sizes: 50 labeled images per class and 400 per class. We form an unlabeled set of ∼4100
images/class from 4 selected classes, some animal and some non-animal (car, truck, ship, airplane).
In Fig. 1 We compared to 6 SSL methods (Pi-Model [14], Mean-Teacher [25], Pseudo-label [16],
VAT [19], MixMatch [1], and FixMatch [24]), a “labeled only” baseline and five state-of-the-art
open-set/safe SSL methods: UASD [5], DS3L [7], MTCF [28], OpenMatch [23] and Curriculum-
labeling [3]. Test accuracy is reported on the held-out test set of 6 animal classes. The perfect OOD
filtering column shows the best-possible case for methods under the OOD-is-harmful paradigm.

The key takeaways from Fig. 1 are: 1. Fix-A-Step improves all SSL methods in almost all settings,
despite its relative simplicity. 2. Perfect OOD filtering is not enough. The gains of our Fix-A-Step
over this best-case suggest that our OOD-is-helpful paradigm should be prioritized over OOD filtering.

Heart2Heart Experiments. In pursuit of realistic evaluation, we propose a clinically-relevant SSL
task called Heart2Heart. The key question is: can we generalize classifiers of ultrasound images of
the heart from one hospital to images from different hospitals in other countries. We train classifiers
to recognize view (PLAX, PSAX, A4C, or A2C) using images from TMED-2 [10], including 56
labeled studies as well as 353,500 uncurated unlabeled images. We report balanced accuracy on
TMED-2’s test set, as well as external generalization balanced accuracy on 7231 available PLAX,
A2C, and A4C images from the Unity dataset (17 hospitals in the UK) [8], and 2000 images (A2C
and A4C views only) in the CAMUS dataset from a hospital in France [15]. Fig. 2 shows that Fix-A-
Step yields gains across all tested SSL methods (Pi-Model, VAT, FixMatch). With Fix-A-Step,
all methods convincingly outperform the labeled-only baseline. External evaluation on Unity and
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CAMUS further suggests that these gains can transfer to new patients at different hospitals.
Compared to OpenMatch, a state-of-the-art safe SSL method, Fix-A-Step yields better accuracy while
being much simpler and faster to train ( 2-3x speedup, see App B.1).

4 Discussion and Broader Impacts

This paper makes three contributions to deep SSL image classification. First, we argue that uncurated
or OOD data in the unlabeled set can be quite helpful, reinforcing other parallel work that finds OOD
data for SSL “not completely useless” [12]. Second, we propose Fix-A-Step, a new method remark-
able for its simplicity as well as its effectiveness. Finally, we propose a realistic medical imaging
benchmark for SSL called Heart2Heart to inspire robust studies of clinical model transportability
across global populations. Throughout, our methodology emphasizes simplicity: Fix-A-Step can
repair many different SSL methods without introducing any new neural networks, loss functions, or
expensive optimization procedures.

Semi-supervised image classification has many positive applications. Indeed, work on SSL is often
specifically motivated by the promise of improved efficiency in environments where labels are
expensive and time-consuming as is the case in medical imaging [9, 18]. However, care must be taken
to ensure that automated methods actually benefit patients and do not widen current disparities [4].
Our present Heart2Heart evaluations are an important step beyond single-center evaluations though
do not reflect the true geographic and racial diversity of many patient populations. While all images
used in our Heart2Heart task are completely de-identified and come from public open-access datasets
(and thus did not require ethics review), we stress the responsibility we carry as researchers to protect
the best interests of the individuals who contributed data.
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A Illustration: OOD unlabeled data can be helpful

We motivate the hypothesis that unlabeled data even from out-of-distribution (OOD) classes could
be useful by an experiment testing the off-the-shelf performance of MixMatch [1] on the CIFAR-10
6 animal task (with 400 images per class in training set). We compare MixMatch with and without
perfect OOD filtering under three mismatch levels ζ = 25%, 50% and 75%. Results are shown in
Fig. A.1. Counter-intuitively we see that perfect OOD Filtering leads to clearly worse performance
at all mismatch levels. This finding appears robust across 5 random train/test splits. This result
suggests to us that unlabeled data, even with OOD classes, could be useful via MixMatch style
augmentation. Note that our suggested Fix-A-Step procedure provides further safeguards via the
gradient step modification, which are not used in Fig. A.1.
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Figure A.1: CIFAR-10 6-animal, 400 examples/class. Results average across 5 train/test splits (shaded area
shows standard deviation). Both methods use the same hyper-parameters for fair comparison.

B Comparison of computation cost and performance on TMED2

Methods split0 split1 split2
Acc Runtime Acc Runtime Acc Runtime

Pi-model+Fix-A-Step 95.33 233 95.08 240 95.73 218
VAT+Fix-A-Step 95.58 392 95.30 343 95.66 356

OpenMatch 94.54 1244 94.59 1282 93.22 879
Table B.1: Comparison of runtime and test balanced accuracy on TMED-2 view classification task. Runtime
in minutes. Each model is trained on a Nvidia A100. In practice, we found OpenMatch converges slower than
alternatives compared, we thus train about 2x more iterations for OpenMatch (otherwise its accuracy performance
would be worse).
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C Training Details

Hyperparameters for CIFAR-10 experiments. Table C.1 lists the experimental settings (dataset
sizes, etc.) and hyperparameters used for all CIFAR-10 experiments. We did not tune any hyperpa-
rameters specifically for Fix-A-Step. Each model is train on a Nvidia A-100 GPU.

BASIC SETTINGS CIFAR-10
TRAIN LABELED SET SIZE 2400/300
TRAIN UNLABELED SET SIZE 16400/17800
VALIDATION SET SIZE 3000
TEST SET SIZE 6000

Labeled only VAT
Labeled Batch size 64
Learning rate 3e-3
Weight decay 2e-3

Labeled batch size 64
Unlabeled batch size 64
Learning rate 3e-2
Weight decay 4e-5
Max consistency coefficient 0.3
Unlabeled loss warmup iterations 419430
Unlabeled loss warmup schedule linear
VAT ξ 1e-6
VAT ϵ 6

Pseudo-label Mean Teacher
Labeled batch size 64
Unlabeled batch size 64
Learning rate 3e-2
Weight decay 5e-4
Max consistency coefficient 10.0
Unlabeled loss warmup iterations 419430
Unlabeled loss warmup schedule linear

Labeled batch size 64
Unlabeled batch size 64
Learning rate 3e-2
Weight decay 5e-4
Max consistency coefficient 50.0
Unlabeled loss warmup iterations 419430
Unlabeled loss warmup schedule linear

Pi-Model MixMatch
Labeled batch size 64
Unlabeled batch size 64
Learning rate 3e-2
Weight decay 5e-4
Max consistency coefficient 10.0
Unlabeled loss warmup iterations 419430
Unlabeled loss warmup schedule linear

Labeled batch size 64
Unlabeled batch size 64
Learning rate 3e-2
Weight decay 4e-5
Max consistency coefficient 75.0
Unlabeled loss warmup iterations 1048576
Unlabeled loss warmup schedule linear
Sharpening temperature 0.5
Beta shape α 0.75

FixMatch
Labeled batch size 64
Unlabeled batch size 448
Learning rate 3e-2
Weight decay 5e-4
Max consistency coefficient 1.0

Unlabeled loss warmup iterations No
warmup

Unlabeled loss warmup schedule No
warmup

Sharpening temperature 1.0
Pseudo-label threshold 0.95

Table C.1: Hyperparameters used for CIFAR-10 experiments. All settings represent the recommended
defaults suggested in implementations by original authors for the 400 examples/class setting. We did not tune
any hyperparameters specifically for Fix-A-Step.
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Hyperparameters for Heart2Heart

Hyper-parameters are only tuned for the supervised-only baseline and the non Fix-A-Step version
of the Pi-model, VAT and FixMatch. We ran 100 trials2 of Tree-structured Parzen Estimator (TPE)
based black box optimization using an open source AutoML toolkit3 for each algorithm and each
data split. The chosen hyper-parameters are then directly applied to Fix-A-Step without retuning.
After hyper-parameter selection, each algorithm is then trained for 1000 epochs, the balanced test
accuracy at maximum validation balanced accuracy is then reported.

Labeled-only: we search learning rate in {0.001, 0.003, 0.01, 0.03, 0.1, 0.3}, weight decay
in {0.0, 0.00005, 0.0005, 0.005, 0.05}, optimizer in {Adam,SGD}, learning rate schedule in
{Fixed,Cosine}. Batch size is set to 64.

Pi-model: We search learning rate in {0.003, 0.01, 0.03, 0.1}, weight decay in
{0.0, 0.0005, 0.005, 0.05}, optimizer in {Adam,SGD}, learning rate schedule in {Fixed,Cosine},
Max consistency coefficient in {1.0, 5.0, 10.0, 20.0, 100.0}, unlabeled loss warmup iterations in
{0, 17000, 34000}. Labeled batch size is set to 64 and unlabeled batch size is set to 64.

VAT: We search learning rate in {0.0002, 0.0006, 0.002, 0.006}, weight decay in
{0.000004, 0.00004, 0.0004}, optimizer in {Adam,SGD}, learning rate schedule in {Fixed,Cosine},
Max consistency coefficient in {0.3, 0.1, 0.9, 0.03, 3}, unlabeled loss warmup iterations in
{0, 17000, 34000}. Labeled batch size is set to 64, unlabeled batch size is set to 64. ξ is set to
0.000001 and ϵ is set to 6.

FixMatch: We search learning rate in {0.003, 0.01, 0.03, 0.1}, weight decay in
{0.0005, 0.005, 0.05}, optimizer in {Adam,SGD}, learning rate schedule in {Fixed,Cosine}, Max
consistency coefficient in {0.5, 1.0, 5.0, 10.0}, Labeled batch size is set to 64, unlabeled batch size
is set to 320. We set sharpening temperature to 1.0 and pseudo-label threshold is set to 0.95 (as in
CIFAR experiments).

Labeled loss implementation: Weighted cross entropy

On many realistic SSL classification tasks, even the labeled set will have noticeably imbalanced class
frequencies. For example, in the TMED-2 view labels, the four view types (PLAX, PSAX, A4C,
A2C) differ in the number of available examples, with the rarest class (A2C) roughly 3x less common
than the most common class (PLAX). To counteract the effect of class imbalance, we use weighted
cross-entropy for labeled loss, following prior works [9, 27]. Let integer c ∈ {1, 2, . . . C} index the
classes in the labeled set, and let Nc denote the number of images for class c. Then when we compute
the labeled loss ℓL, we assign a weight ωc > 0 to the true class c that is inversely proportional to the
number of images Nc of the class in the training set:

ℓL(x, c;w) = −ωc log fw(x)[c], ωc =

∏
k ̸=c Nk∑C

j=1

∏
k ̸=j Nk

⇐= ωc ∝
1

Nc
(3)

Here c denotes the integer index of the true class corresponding to image x, w denotes the neural
network weight parameters, and fw(x)[c] denotes the c-th entry of the softmax output vector produced
by the neural network classifier.

Cosine-annealing of learning rate.

We found that several baselines were notably improved using the cosine-annealing schedule of
learning rate suggested by [24]. Cosine-annealing sets the learning rate at iteration i to ηcos( 7πi16I ),
where η is the initial learning rate, and I is the total iterations.

To be extra careful, we tried to allow all open-set/safe SSL baselines to also benefit from cosine
annealing.

2in practice, for each trial we train for only 180 epochs to speed up the hyper-parameters selection process
3https://github.com/microsoft/nni
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• MTCF is trained using Adam following the author’s implementation [28]. Although the
author did not originally. use cosine learning rate schedule, we found that adding cosine
learning rate schedule substantially improve MTCF’s performance. We thus report the
performance for MTCF with cosine annealing.

• DS3L is trained using Adam following the author’s implementation [7]. We tried to add Co-
sine learning rate to DS3L but result in worse performance. We thus report the performance
for DS3L without cosine learning rate.

D Pseudo-code for Fix-A-Step and Subprocedures

Here, we provide implementation details of Fix-A-Step training (Alg. D.1). Submodules
AUG+SOFTLABEL D.2 and MIXMATCHAUG D.3 were originally proposed by MixMatch [1]
under no contamination SSL settings.

Algorithm D.1: Fix-A-Step Training
Input: Labeled set DL, Unlabeled set DU (uncurated)
Output: Trained weights w∗

Hyperparameters (†: unique to Fix-A-Step)
• Sharpening temperature τ>0 for SOFTPSEUDOLABEL†

• Shape α>0 of Beta(α, α) dist. for MIXMATCHAUG†

• Max. iterations I , Step size ϵ, Initial weights w
• Unlabeled-loss weight per iter λ1, . . . λI

1: for iter i ∈ 1, 2, . . . I until converged do
2: {xL,yL},xU ← GETNEXTMINIBATCH()
3: x̃U

1 , x̃
U
2 , ỹ

U ← AUG+SOFTPSEUDOLABEL(xU ;w, τ)
4: x̃L, ỹL ← MIXMATCHAUG({xL,yL}, x̃U

1 , x̃
U
2 , ỹ

U ;α)
5: gL ← ∇wℓ

L(x̃L, ỹL;w)
6: gU ← ∇wℓ

U (x̃U
1 , ỹ

U ;w)
7: if INNERPRODUCT(gL, gU ) > 0 then
8: w ← w − ϵ(gL + λig

U )
9: else

10: w ← w − ϵgL

11: end if
12: end for
13: return w
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Algorithm D.2: Augment and Soft-Pseudo-Label
Input: Unlabeled batch features xU

Output: Augmented features xU
1 ,x

U
2 , Soft pseudo labels ỹU

Hyperparameters
• Sharpening temperature τ>0

Procedure
1: for each image x in xU do
2: x(1) ← BasicImageAugment(xn)
3: x(2) ← BasicImageAugment(xn)
4: ρ(1) ← fw(x

(1)) // Probability vector predicted by neural
net

5: ρ(2) ← fw(x
(2))

6: r̃ ←
(
1
2ρ

(1) + 1
2ρ

(2)
)1/τ

// Non-negative vector, sharpened by
element-wise power

7: S ←
∑

c r̃c
8: ỹ ← [ r̃1S , r̃2

S , . . . r̃C
S ] // Normalize to “soft” label (proba.

vector)
9: Add x(1) to x̃U

1

10: Add x(2) to x̃U
2

11: Add ỹ to ỹU

12: end for
13: return x̃U

1 , x̃U
2 , ỹU

Algorithm D.3: MixMatchAug : Transformation of Labeled Set
Input: Labeled batch xL,yL, Unlabeled batch xU , ỹ,
Output: Transformed labeled batch x̃L, ỹL

Hyperparameters
• Shape α>0 of Beta(α, α) dist.

1: for image-label pair x, y in labeled batch xL,yL do
2: x′, y′ ← SAMPLEONEPAIR([xL, x̃U

1 , x̃
U
2 ], [y

L, ỹU , ỹU ])
3: β′ ∼ SAMPLEFROMBETA(α, α)
4: β ← MAX(β′, 1− β′)
5: x̃← βx+ (1− β)x′

6: ỹ ← βy + (1− β)y′

7: Add x̃ to x̃L

8: Add ỹ to ỹL

9: end for
10: return x̃L, ỹL
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E Proof: Fix-A-Step Update is Descent Direction of Labeled Loss

Definition 1: Descent direction of loss ℓ. For any loss function ℓ parameterized by weight vector
w ∈ RD, a vector v ∈ RD is a descent direction of ℓ at w if it satisfies vT∇wℓ < 0 [2].

Lemma 1: The update in Eq. (2) steps in a descent direction of the labeled loss ℓL at the current
minibatch. We prove for each of the two cases in Eq. (2). Top case: Here by assumption the inner
product

∑
d g

L
d g

U
d is positive. This implies that v = −(gL + λgU ) is a descent direction, because

λ > 0 and thus
vT gL = −

∑
d(g

L
d )

2︸ ︷︷ ︸
always negative

−λ
∑

d g
L
d g

U
d︸ ︷︷ ︸

pos. by assumption

< 0 (4)

Bottom case: −gL is a descent direction for ℓL by definition.

While Lemma 1 provides a justification for our approach, we cannot formally guarantee the labeled-
set loss will not increase after each step, for the same reasons that stochastic gradient descent (SGD)
does not always decrease its loss after each minibatch update. First, a descent direction of a small
minibatch may not be a descent direction of the entire dataset. Second, even though the direction of
the step points locally downhill, the length of the step matters; if the step size ϵ > 0 is too large, the
loss may increase. Nevertheless, with proper step size tuning SGD has been wildly successful despite
following minibatch-specific descent directions without formal guarantees of non-increasing loss.
Thus far, we find our approach also successful in practice.
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