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Abstract
To mitigate the ongoing opioid overdose crisis,
public health organizations need to decide how to
prioritize targeted interventions in the most effec-
tive manner, given many candidate locations but
a limited budget. We consider learning from his-
torical opioid overdose events to predict where to
intervene among many candidate spatial regions.
Recent work has suggested performance metrics
that grade models by how well they recommend a
top-K set of regions, computing in hindsight the
fraction of events in the actual top-K regions that
are covered by the recommendation. We show
how to directly optimize such metrics, using ad-
vances in perturbed optimizers that allow end-to-
end gradient-based training. Experiments sug-
gest that on real opioid-related overdose events
from 1620 census tracts in Massachusetts, our
end-to-end neural approach selects 100 tracts for
intervention better than purpose-built statistical
models and tough-to-beat historical baselines.

1. Introduction
The opioid overdose epidemic in the United States has re-
sulted in approximately 400,000 deaths over the past two
decades, with more than 100,000 fatal overdoses alone from
April 2020 to April 2021, a 28.5% increase over the prior
12-month period (U.S. CDC, 2022). The severity of this
overdose epidemic varies widely across space and time (Li
et al., 2019; Shover et al., 2020), influenced by multi-level
factors from drug supply to local socio-demographics to ac-
cess to prevention interventions and substance use treatment.
There is a need for prediction models that can overcome
this heterogeneity to make accurate predictions of near-term
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future overdose events at fine spatiotemporal resolutions,
so that public health agencies can decide how to allocate
limited resources towards the goal of harm reduction. In this
work, we investigate the possibility of learning from past
event counts over a spatiotemporal grid with S regions and
T timesteps to recommend regions that should implement
evidence-based interventions in the near future.

Choosing sensible performance metrics is critical to under-
standing which forecasting models have real-world utility.
Because fatal overdoses are a relatively rare outcome, the
observed event count time series exhibits high sparsity (Heu-
ton et al., 2022) and thus traditional evaluation metrics such
as Root Mean Squared Error (RMSE) may not be the most
suitable. In a recent plan for assessing spatiotemporal fore-
casts of opioid overdose events, Marshall et al. (2022) sug-
gest a new metric: first ask the model to recommend K
regions (where K ≪ S) thought to be the highest-risk in
near-future, then in hindsight record the proportion of all
fatal overdoses events captured or reached in this subset.
Heuton et al. (2022) call this metric BPR, short for per-
centage of best-possible reach. Simply put, this metric is
intervention-aware: public health agencies combating the
opioid overdose epidemic have limited budgets, and may
only be able to deploy some high-cost evidence-based inter-
ventions in targeted higher-risk areas. BPR rewards models
that correctly identify the highest need areas. The size of
the subset K can be selected to match real-world budgets.

Our team has found that several well-known machine learn-
ing (ML) approaches are underwhelming in terms of this
preferred BPR performance metric. Simple baselines that
“predict” using averages of historical mortality score about
as well as do more sophisticated models (see Tab. 1), includ-
ing ensembles of trees and our previous work on Gaussian
Processes (Heuton et al., 2022). This difficult forecasting
problem clearly presents challenges to current ML methods.
New approaches are needed.

We suggest that directly optimizing the quantity of interest,
BPR, will lead to more useful models. Taking inspiration
from work on direct loss minimization (Wei et al., 2021;
Lacoste–Julien et al., 2011), we pursue in this paper an
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approach that directly trains models to score all S spatial
regions for near-future risk, then uses these scores to select
a top-K set of regions that will deliver high BPR. Gradient-
based training of such models is challenging because of
the discrete ranking involved: slight changes to parameters
will almost always leave rankings unchanged, making ac-
quiring signal for how to improve parameters difficult. We
build upon work by Cordonnier et al. (2021), who show
how to select a top-K set of patches from a high-resolution
image for downstream supervised tasks. Their approach
(and ours) uses a differentiable top-K operator based on per-
turbed optimizers (Berthet et al., 2020) to obtain informative
gradients that lead to improved recommendations to target
local interventions.

To summarize our contributions, in this paper we (1) for-
mulate a training objective for differentiable models that
recommend a top-K set of regions by directly optimizing
the best-possible-reach (BPR) performance metric, (2) show
how to use advances in perturbed optimizers to effectively
do gradient-based learning on this objective, and (3) demon-
strate how this framework can improve recommendations for
targeted interventions in the real-world public health chal-
lenge of opioid-related overdose forecasting across 1620
census tracts in the state of Massachusetts.

2. Differentiable Top-K Optimization
We now review the essential background our approach
builds upon from the growing field of differentiable top-
K optimization (Cordonnier et al., 2021). The core task is
a supervised learning task. For each instance, we are given
an input x representing observed measurements for S loca-
tions (e.g. spatial regions of a state or country in a public
health application). We first wish to build a scoring function
rθ(x) ∈ RS that scores each of the S possibilities with a real
number. Here, θ represents the learnable parameters of our
scoring function (e.g. weights of a neural network). Then,
using these scores, we wish to select a size-K subset of all
locations, denoted R, to recommend for further action or
processing. A natural way to do this selection is to keep the
top K highest scoring locations: Rθ(x) = TOPK(rθ(x)).

For training, we have available T pairs of inputs xt and
ground-truth outcomes yt, plus a loss function ℓ that can
grade each recommended set against outcome yt. Model
training then pursues minimizing the loss

θ∗ ← argmin
θ

∑T
t=1 ℓ(yt,Rθ(xt)).︸ ︷︷ ︸

L(θ)

(1)

The key challenge to executing this training in practice is
that the function TOPK is piece-wise constant, so gradi-
ents of L(θ) with respect to θ are zero almost everywhere.
Given a sub-optimal initial parameters θ, trying to directly
optimize Eq. (1) via gradient descent would lead nowhere

due to gradients evaluating to zero. To overcome this chal-
lenge, Cordonnier et al. (2021) leverage recent advances in
perturbed optimizers (Berthet et al., 2020), also known as
stochastic smoothing (Abernethy et al., 2016).

The first step is to reframe the top-K operation as a linear
program (LP). Let vector r ∈ RS represent the real-valued
scores for each location of interest. Let CK ⊂ RS denote a
constrained domain of “relaxed” indicator vectors:

CK = {i ∈ RS :
∑S

s=1 is ≤ K and 0 ≤ is ≤ 1 ∀s}
Then we can equivalently express the top-K operator on
vector r as the solution to the following linear program (LP)

LPTOPK(r) = argmax
i∈CK

⟨i, r⟩, ⟨i, r⟩≜
∑S

s=1 isrs. (2)

One of the possible equivalent solutions to Eq. (2) will yield
a truly K-hot binary vector i, where entries that are set to 1
indicate the K chosen locations.

The next step is to apply perturbations. Let random variable
z ∈ RS be Gaussian-distributed with zero mean and unit
variance. We construct a perturbed linear program by aver-
aging over M iid samples of z, denoted zm ∼ N (0, IS):

PLPTOPK(r) =
1

M

M∑
m=1

argmax
i∈CK

⟨i, r+ σzm⟩, (3)

where σ > 0 is a user-controlled hyperparameter setting the
noise-level of the stochastic smoothing. This is an unbiased
estimator of LPTOPK(r). Like any M -sample Monte Carlo
estimator, its variance around this ideal mean decreases as
the number of samples M increases, allowing the user a
way to improve accuracy at the expense of runtime.

Putting it all together, when training during the forward
pass we pursue a variant of Eq. (1) where we estimate the
K-selected regions via Rθ(x) = PLPTOPK(rθ(x)). We
set up this way because this perturbed definition yields the
same selected regions as the ideal TOPK function in expec-
tation, but crucially the perturbed operator is not piecewise-
constant: gradients with respect to θ are no longer almost
always zero. Following Cordonnier et al. (2021), we need
not actually solve an LP for each of the M perturbations;
instead equivalently we can just compute TOPK directly on
each perturbation.

For the backward pass of automatic differentiation, we need
the Jacobian of the S-dimensional output vector P produced
by PLPTOPK(r). Following Cordonnier et al. (2021), we
have a straightforward expression

J(r) = ∇rP = Ez

[
argmax

i∈CK

⟨i, r+ σz⟩z⊤/σ

]
. (4)

Here, the Jacobian J is an S × S matrix, where entry j, k

gives the scalar derivative Pj

rk
. This formula is derivable

from Lemma 1.5 of Abernethy et al. (2016). Again, we
compute an M -sample Monte Carlo estimate of this expec-
tation in practice.
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Mean Sq. Error
Model train test

MLP + Top-2 1.0 1.7

MLP 3.8 5.0

Figure 1. Toy task: Add the 2 Most Yellow. Left: Illustration of
one instance (xt, yt) for this task. Each feature vector xt consists
of 9 numbers, each with a corresponding RGB color. The predic-
tion goal is to return the sum of the 2 most-yellow values (circled).
The outcome here is yt = 11.7. Right: Predictive error (lower is
better). Using a perturbed Top-2 operator yields better results.

Demo on Toy Data: Add 2 Most Yellow Numbers. In
order to demonstrate differentiable top-K optimization on
an open dataset, we now provide a synthetic prediction task
where success requires explicit reasoning about top-K val-
ues. Inspired by the billiard ball experiment in Cordonnier
et al. (2021) but wishing to avoid complexities of image
processing, we generate a toy dataset of (xt, yt) pairs as
follows. First, for features xt, we generate 9 numeric values
uniformly in (0.0, 10.0). For each value, we also generate
3 intensities in (0.0, 1.0) representing red, green, and blue
(R, G, B) color components. Each xt can thus be seen as
a 36-dimensional feature vector, or artistically rendered as
9 colored numbers (Figure 1). Second, we define outcome
yt ∈ R as the sum of the two most-yellow numbers, where
yellowness is defined as R+G−B. In order to generalize
well to unseen data, model architectures can use a TOPK
operator to indicate which numbers are the “2 most yellow”.

To define the score function rθ(xt), we use an artificial
neural network that takes only the 27 RGB values in xt and
produces a score in (0.0, 1.0) for each of the 9 numbers.
These scores are then element-wise multiplied with the 9
values, and the sum is taken. A perfect model would produce
a score vector that is 2-hot, with a 1 at the location of the
two most yellow values, and 0’s elsewhere. We compare
a 2-layer MLP that passes the score through the perturbed
TopK module (with K = 2) to one without any inductive
bias encouraging the score to be 2-hot.

Results of this demo are shown in Fig. 1 (right) after training
on a dataset of T = 5000 instances. The addition of the
top-2 module leads to lower MSE on test data, indicating
our gradient-based learning can enable generalization.

3. Application to Opioid Overdose Forecasting
Dataset. We obtained death certificate data on fatal opioid-
related overdoses for years 2001-2020 in Massachusetts.
These overdose deaths were defined as unintentional, in-
tentional, and undetermined drug poisonings containing an
opioid code as an underlying cause-of-death. Such data are
publicly available upon request from the MA Registry of

Vital Records and Statistics. The data contains residential
street addresses for each individual decedent, which we sub-
sequently geocoded for spatial analyses. Our institution’s
IRB gave the project a Not Human Research Determination.

Modeling Task. We divided the state into the S = 1620
census tracts used in the 2020 U.S. Census. Each tract by de-
sign contains typically 4000 people (range 1200-8000) (US
Census Bureau, 2022). We divided time into calendar years.
We compute the observed number of death events Ys,t at
time unit t for individuals residing in census tract s, using
open tools (Freeman, 2022) that call the US Census Geocod-
ing API to map each residential street address to a census
tract. Given counts observed over a training period up to
time t−1, our goal is to predict death counts at time t across
all S census tracts.

Percentage of Best-Possible Reach. The performance met-
ric of interest is what Heuton et al. (2022) call the fraction
or percentage of best-possible reach, hereafter abbreviated
BPR. This is a way of judging in hindsight how well the
model selects a targeted set of K regions to intervene out of
S possible regions. The appropriate value of K is decided
in advance. Let R be a model’s recommended set of K
distinct regions (|R| = K). Let Yt = [Y1,t, . . . YS,t] be
the S-dimensional vector of adverse event counts (for our
application, opioid-related overdose deaths) observed at the
target time t across all S regions. Recall that the TOPK
function returns the integer IDs of the K largest entries in a
given vector. We then define BPR as

BPR(Yt,R) =
∑

s∈R Ys,t∑
s∈TOPK(Y) Ys,t

, (5)

=
# events in K regions picked by model

# events in actual K highest-count regions
.

This fraction’s numerator counts how many adverse events
the model’s recommendation could reach. The denomina-
tor counts how many adverse events a perfect oracle with
knowledge of the future could reach on the same budget.
For public health tasks, BPR has a convenient interpretation
as the fraction of opioid-related overdoses the current model
would identify compared to the best possible model. We
often convert this fraction to a percentage, denoted %BPR.
The best possible %BPR is 100.0, the worst possible is 0.0.
An example calculation is shown in Appendix A.

Marshall et al. (2022) suggest a similar metric for their
preregistered randomized controlled trial of opioid overdose
forecasting in Rhode Island. The small difference is the
denominator: they suggest summing over all S regions, not
just the top-K. We prefer the formulation in Eq. (5), because
it defines a perfect %BPR always as 100%, and the range of
valid BPR values does not change across time periods.

Proposed models. In order to directly predict where to
intervene on this overdose application, we train neural net-
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works by minimizing Eq. (1) via the methods in Sec. 2.
For prediction at time t, we set as inputs xt the adverse
event counts observed over the previous W timesteps:
xt = Y 1:S,t−W :t−1. This input is fed into a score func-
tion rθ(xt), whose top-K entriesR(xt) are compared to the
actual outcome counts at the target time yt = Y 1:S,t via
loss ℓ(yt,R(xt)) = 1 − BPR(yt,R(xt)). The two hyper-
parameters, the number of samples M and smoothing noise
σ are set via grid search.

We consider two simple architectures for the score function
r. First, a linear model over past mortality values: rs =∑t−1

τ=t−W θτYs,τ . Second, an MLP with 2 hidden layers
(50 units then 10 units), whose weights θ are shared across
all spatial locations: rs = MLP([Y s,t−W :t−1, us]; θ). Here
us ∈ R5 are additional covariates concatenated onto Y ,
representing the 5-dimensional Social Vulnerability Index
(CDC ATSDR, 2018) of tract s.

Protocol. The goal of our experiment is to predict future
opioid overdose mortality based on historical data. For
training, we assemble instances (xt, yt) for 5 years (2013-
2017), with historical covariates inside each xt available for
up to W = 5 previous years. Hyperparameters are chosen
using the xt, yt pair from year 2018 for validation. Finally,
models are evaluated on predictions the years 2019-2020.
For each test year t, we predict using updated inputs xt

but the same fixed parameters θ learned from training. In
all experiments, we chose K = 100 via conversation with
public health experts.

Baselines. We compare our proposed method to several
baselines. First, we include a model that recommends K
tracts at random, to help gauge overall task difficulty. Sec-
ond, we try risk scores determined by historical averages
that need no training at all. Public health officials might
reasonably suggest selecting the K areas with the highest
historical mortality. Thus, we include the historical 7-year
average (7 chosen out of 1,3,5,7 by performance on the
validation year).

We further include probabilistic models deliberately devel-
oped for forecasting count data. We fit a generalized linear
model (GLM) and a gradient boosted tree (GBT), each maxi-
mizing Poisson likelihood. We also fit Heuton et al. (2022)’s
Zero Inflated Gaussian Process (ZIGP) model developed
specifically for opioid overdose forecasting, using code from
the authors. (We use annual time units, so %BPR here is not
comparable to Heuton et al.’s quarter-year analysis). These
probabalistic baselines are fit using both past mortality and
the Social Vulnerability Covariates.

Results and Analysis. Table 1 reports the %BPR averaged
over both test years (2019, 2020). We first observe the chal-
lenging nature of fatal opioid overdose forecasting: simple
historical averages are competitive with GLMs and outper-

MODEL OBJECTIVE %BPR

RANDOM N/A 24.3
7-YEAR AVERAGE N/A 58.7
MLP + TOPK BPR 63.4
LINEAR + TOPK BPR 59.8
GLM (LINEAR + POISSON) POISSON LIK. 60.2
GRAD. BOOSTED TREES POISSON LIK. 56.4
ZIGP POISSON LIK. 44.9

Table 1. Comparison of models in terms of percentage of best
possible reach (%BPR, higher is better) averaged over test years
2019 and 2020, using K = 100 of S=1620 tracts in MA.

Best BPR
Common
Naive
Not Top-100

Figure 2. Visualizing tracts recommended by different models

form GBT ensembles of trees and the ZIGP. Yet we also see
the strength of our proposed objective: the best performing
model by a margin of 3 points is our 2-layer MLP trained
directly to optimize BPR via perturbed top-K optimization.

To better evaluate the difference between our best-
performing MLP trained to maximize BPR and the 7-year
average model, a map of the different decisions is presented
in Figure 2. The “naive” 7-year average model selects larger,
rural tracts, responding to transient past spikes. Our “best
BPR” model appears to focus on smaller urban tracts, cap-
turing spatial patterns that yield better recommendations.

4. Conclusion
On one hand, it is not too surprising that a model trained
to maximize BPR should have the highest BPR on heldout
data. However, if metrics such as BPR are truly a useful
evaluation criteria for public health interventions, as argued
for in the large-scale randomized trial plan by Marshall
et al. (2022), we argue that BPR as a metric should inform
training, not just evaluation.

Prior to this paper, perturbed top-K techniques from the opti-
mization community (Berthet et al., 2020; Abernethy et al.,
2016; Cuturi et al., 2019) have not to our knowledge been
applied to spatiotemporal problems in public health. We
hope these methods can lead to improved decision-making
about where to intervene, as data-driven mitigation strate-
gies are desperately needed to reduce the harms of the opioid
epidemic.
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Figure 3. A cartoon illustration of a BPR calculation for Massachusetts counties. Here we demonstrate the BPR calculation for K = 3.
Left: a synthetic ground-truth dataset. The top-3 true counties are labeled, and all other values are 1. The denominator of Eq. 5 will be
8 + 4 + 4 = 16.
Center: A hypothetical forecast, attempting to predict the left map. Although the magnitude of every prediction is wrong, this forecast
correctly identifies the top 3 counties and would achieve a Perfect BPR of %100.
Right: Another hypothetical forecast, but this time only two of the top-3 counties are correctly identified. To calculate the numerator of
Eq. 5, we sum the ground-truth counts from the predicted top-3 locations: 4 + 4 + 1 = 9, resulting in a BPR of 9

16
= %56.25

A. Example BPR Calculation
Figure 3 shows a hypothetical scenario to demonstrate the calculation of BPR for the top-3 locations. The leftmost map
depicts the synthetic ”ground-truth.” The top-3 counties are labeled. When calculating BPR, we always use the counts from
the ground truth.

The denominator of BPR is the sum of the top-K locations in the ground truth data:

BPR(Yt,R) =
∑

s∈R Ys,t∑
s∈TOPK(Y) Ys,t

=

∑
s∈R Ys,t

8 + 4 + 4

Given the Figure 3 center forecast, the recommended top-3 locationsR are exactly the same as the TOP3(Y) locations, so
the BPR is perfect:

=
8 + 4 + 4

8 + 4 + 4
= %100

Given the Figure 3 right forecast, the recommended top-3 locations R only contain two of the true TOP3(Y) locations.
Again, to calculate the numerator, we take the ground-truth counts from the recommended locations, but this time they fall
short of a perfect BPR:

=
4 + 4 + 1

8 + 4 + 4
=

9

16
= %56.25

B. Selection of σ and M Hyperparameters
The two most important hyperparameters for the perturbed Top-K optimizer PLPTOPK are the noise level σ and number of
samples M . For the opioid data experiment a hyperparameter grid of σ = [0.05, 0.1, 0.3, 0.5] and M = [25, 50, 100, 500]
was used. For both models which used the perturbed Top-K optimizer, σ = 0.3 and M = 50 was selected.
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