
Prediction-Constrained POMDPs

Joseph Futoma
Harvard SEAS

Michael C. Hughes
Dept of. Computer Science, Tufts University

Finale Doshi-Velez
Harvard SEAS

Abstract

We propose prediction-constrained (PC) training for POMDPs, simultaneously
yielding high-reward policies while explaining observed histories well. PC training
allows effective model learning even in settings with misspecified models, as it can
ignore observation patterns that would distract classic two-stage training.

1 Motivation and Background

The partially observed Markov decision process (POMDP) [Monahan, 1982, Kaelbling et al., 1998]
is a popular approach for learning to act in partially-observable domains. When the parameters of
the POMDP are unknown (as is typical in reinforcement learning settings), a standard approach to
identifying the optimal policy involves two stages: first, we fit transition and observation models
given the data, and then we solve the learnt POMDP to obtain a policy [Chrisman, 1992]. However,
if not all of the signal in the observations is relevant for decision-making, this two-stage process can
result in the first stage wasting modeling effort and the second stage learning inferior policies.

We propose a novel POMDP training objective that balances two goals: providing accurate explana-
tions of the data through a generative model (the POMDP), and learning a high-value policy. This
two-term objective ensures that we do not waste computation developing an accurate model for parts
of the problem that are irrelevant to decision making. As our method is model-based it will tend to be
more sample efficient than alternative model-free deep learning methods, e.g. Hausknecht and Stone
[2015]. This is a particular advantage in domains of limited data availability, such as healthcare.

POMDP Background and Notation. We consider POMDPs with K discrete states, A discrete
actions, and continuous D-dimensional observations. Let τajk ≡ p(s′ = k|s = j, a = a) denote
the probability of transitioning from state j to k after taking action a, with

∑
k τajk = 1. For each

dimension d ∈ {1, 2, . . . D}, we independently sample observation od ∼ N (µkad, σ
2
kad), where k

identifies the state just entered (s′) and a is the action just taken.

Let θ = {τ, µ, σ} denote the collection of model parameters. These parameters define an input-output
hidden Markov model (IO-HMM) [Bengio and Frasconi, 1995], where the likelihood p(o|a, θ) of
observations given actions can be evaluated via dynamic programming. Given θ and a learned reward
function r(s, a) (we do not include r in the likelihood), we can solve the POMDP for the optimal
policy. We use point based value iteration (PBVI) [Pineau et al., 2003, Shani et al., 2013], an efficient
solver for the small and medium-sized POMDPs we interested in. We adapt ideas from Hoey and
Poupart [2005] to handle continuous observations.

2 Proposed Method: Prediction-Constrained POMDP

Unlike existing two-stage methods [Chrisman, 1992, Koenig and Simmons, 1998], which learn θ by
maximizing an IO-HMM likelihood alone, our new training objective learns θ by maximizing both
the likelihood and an estimated value of the policy π(θ) given by PBVI:

max
θ

1

D(
∑
n Tn)

∑
n∈Dexpl

log p(on,1:Tn |an,1:Tn−1, θ) + λ · valueCWPDIS(π(θ), πbeh,Dbeh, r, γ). (1)

The first term is the IO-HMM data likelihood, while the second term is an off-policy estimate of
the value of the optimal policy under the model parameters θ (see details below). Conceptually,

Workshop on Reinforcement Learning under Partial Observability, NeurIPS 2018

1 2 4 6 8
Number of dims

2.0

1.5

1.0

0.5

0.0

A
vg

. m
ar

gi
na

l l
ik

el
ih

oo
d

pe
r

di
m

en
si

on

Average HMM marginal likelihood on test set

1 2 4 6 8
Number of dims

1.5

1.0

0.5

0.0

0.5

R
et

ur
n

Average return of PBVI policy on test set

oracle
2 stage (EM)
2 stage (EM+)
lambda: 0.01

lambda: 0.10
lambda: 1.00
lambda: 10.00
lambda: 100.00

Figure 1: Tiger results as distraction dimensions grow, with K = 2, σ = 0.2. PC training with λ > 0
outperforms two-stage EM+PBVI in policy value, while still having reasonable likelihoods. “Oracle” is an ideal
θ that models dimension 1 well enough such that π(θ) finds the safe door. EM+ is a heuristic improvement to
two-stage training so dimensions correlated with rewards are constrained to have lower σ than other dimensions.

Eq. (1) trades off generative and reward-seeking properties of the model parameters. The tradeoff
scalar λ > 0 controls how important the reward-seeking term is. We term our approach prediction-
constrained (PC) training for POMDPs. Our PC-POMDP method extends recent PC objectives for
supervising topic models and mixture models [Hughes et al., 2017, 2018] to reinforcement learning.

It remains to determine how to quantify the quality of the generative model and the quality of the
policy. We optimize the likelihood model on sequences Dexpl collected under an exploration policy.
This set covers many possible state-action histories and thus allows better estimation of all entries in
the transition and emission parameters τ, µ, σ ∈ θ.

For the value of the policy, we cannot simply use the estimated value from the POMDP solver, as a
misspecified set of parameters θ could choose to hallucinate an arbitrarily high reward. One choice
would be via Monte Carlo roll-outs of the policy. To reuse rollouts, we turn to off-policy estimation.
Specifically, we collect rollouts under a reference behavior policy πbeh (known in advance). We then
use consistent weighted per-decision importance sampling (CWPDIS) [Thomas, 2015] to reweight
observed rewards from data collected under πbeh to yield a consistent estimate of the long-term value
of our model policy π(θ) under discount factor γ ∈ (0, 1). Crucially, this estimator is a differentiable
function of the model parameters θ, and thus Eq. (1) can be optimized via first-order gradient ascent.

3 Synthetic Experiment: Noisy Tiger Problem

We evaluate our PC approach on a challenging extension of the classic POMDP tiger problem
Kaelbling et al. [1998]. A room has K doors; only one door is safe while the remaining K − 1 have
tigers behind them. The agent has A = K +1 actions: either open one of the doors or listen for noisy
evidence of which door is safe to open. Revealing a tiger gives −5 reward, while the safe door yields
+1 reward, and listening incurs−0.1 reward. Observations ont haveD ≥ 1 dimensions. Only the first
dimension signals the safe door via its mean isafe ∈ {1, . . . ,K}: ont1 ∼ N (isafe, σ

2) where σ = 0.2.
The remaining dimensions are irrelevant, each with random mean i ∼ Unif({1, . . . ,K}) and narrow
Gaussian standard deviation of 0.1 (less than σ = 0.2). This environment is designed to confuse
the two-stage method that fits θ via an expectation-maximization (EM) procedure that maximizes
likelihood only, as this first-stage will prefer explaining the irrelevant but low-noise dimensions,
rather than the relevant but higher-noise first dimension. Note KD states are needed to perfectly
model the data but only K states are needed to learn an optimal PBVI policy π(θ). Our proposed
PC-POMDP approach with only K states will, given a large enough emphasis on the reward term,
favor parameters that focus on the signal dimension and reap better rewards.

Outlook. We anticipate PC training for POMDPs will have advantages when models are misspeci-
fied, so λ� 0 encourages rewards to guide parameters while still learning a good HMM. We plan
future applications in the medical domain where our approach is uniquely suited to the combination
of noisy, possibly irrelevant observations in a batch setting. Our joint-training paradigm also allows
us to learn from semi-supervised data, where some sequences are missing rewards.

2

Acknowledgments

FDV and JF acknowledge support from NSF Project 1750358. JF additionally acknowledges Oracle
Labs and a Harvard CRCS fellowship.

References
Yoshua Bengio and Paolo Frasconi. An input output HMM architecture. In Advances in neural

information processing systems, 1995.

Lonnie Chrisman. Reinforcement learning with perceptual aliasing: The perceptual distinc-
tions approach. In AAAI, 1992. URL https://www.aaai.org/Papers/AAAI/1992/
AAAI92-029.pdf.

M. Hausknecht and P. Stone. Deep recurrent q-learning for partially observable mdps. AAAI, 2015.

J. Hoey and P. Poupart. Solving pomdps with continuous or large discrete observation spaces. IJCAI,
2005.

M. C. Hughes, G. Hope, L. Weiner, T. H. Mccoy, R. H. Perlis, E. Sudderth, and F. Doshi-Velez.
Semi-supervised prediction-constrained topic models. In AISTATS, 2018.

Michael C. Hughes, Leah Weiner, Gabriel Hope, Thomas H. McCoy, Roy H. Perlis, Erik B. Sudderth,
and Finale Doshi-Velez. Prediction-Constrained Training for Semi-Supervised Mixture and Topic
Models. arXiv preprint 1707.07341, 2017.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable
stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

Sven Koenig and Reid G Simmons. Xavier: A robot navigation architecture based on partially
observable markov decision process models. In Artificial Intelligence Based Mobile Robotics:
Case Studies of Successful Robot Systems. Citeseer, 1998.

George E Monahan. State of the art—a survey of partially observable markov decision processes:
theory, models, and algorithms. Management Science, 28(1):1–16, 1982.

J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algorithm for pomdps.
IJCAI, 2003.

L. R. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition.
Proc. of the IEEE, 77(2):257–286, 1989.

G. Shani, J. Pineau, and R. Kaplow. A survey of point-based pomdp solvers. Autonomous Agents
and Multi-Agent Systems, 27(1):1–51, 2013.

EJ Sondik. The optimal control of partially observable markov processes over the infinite horizon:
Discounted costs. Operations Research, 26:282–304, 1978.

Philip S. Thomas. Safe Reinforcement Learning. PhD thesis, University of Massachusetts, Amherst,
2015. URL https://people.cs.umass.edu/~pthomas/papers/Thomas2015c.
pdf.

3

https://www.aaai.org/Papers/AAAI/1992/AAAI92-029.pdf
https://www.aaai.org/Papers/AAAI/1992/AAAI92-029.pdf
https://people.cs.umass.edu/~pthomas/papers/Thomas2015c.pdf
https://people.cs.umass.edu/~pthomas/papers/Thomas2015c.pdf

Supplement: Prediction-Constrained POMDPs

o0 o1 o2 · · ·

· · ·

· · ·

· · ·

a1 aT�1at�1

ot oT

sTsts2s1s0

a0

r0 rT�1rt�1r1

Figure 2: Illustration of the sequential generative process for a sequence of hidden states s, actions a, observations
o, and rewards r under a POMDP. Circles with dark outlines represent random variables whose densities are
explicitly modeled.

A Additional Details of POMDP model

Fig. 2 illustrates the important sequential relationships between the POMDP variables at each timestep
t = {0, 1, 2, . . . T} of a sequence.

Initial conditions. Before the agent can act, it must known something about the state of the
environment. We assume that at the first timestep t = 0, the state s0 ∈ {1, 2, . . .K} is drawn from a
Discrete prior with probability vector τ0 (length K vector of positive values that sums to one).

s0 ∼ p(s0) , Discrete(τ01, τ02, . . . τ0K), (2)

We might also see some initial observation o0 ∈ RD, before taking any actions. These are sampled:

o0 ∼ p(o0|s0 = k) , Normal(µ0k, diag(σ2
0k)) (3)

This initial-step D-dimensional multivariate normal likelihood has mean µ0k ∈ RD and a diagonal
covariance matrix whose diagonal is set via the element-wise squaring of standard deviation vector
σ0k ∈ RD+ .

Note that the initial observation can be missing; none of the rest of the sequence conditions on this
(or any) observations.

Taking actions and reaping rewards. At the first timestep, the agent selects some action a0
according to its policy. This choice immediately produces some scalar reward r0 ∈ R via a
deterministic function that depends on the initial state s0 and the first action a0: r0 , r(s0, a0).
Similarly, at all subsequent timesteps t > 0, after taking action at from state st, the agent receives
reward rt , r(st, at) from the same reward function,

State transitions. Given a current state st = j and action at = a, for any time step t ≥ 0, the next
state st+1 at time t+ 1 is generated given its immediate past history via the distribution:

st+1 ∼ p(st+1|st = j, at = a) , Discrete(τaj1, τaj2, . . . τajK). (4)

Here, each transition probability vector τaj has K positive entries that sum to one.

4

Generating observations. Once we’ve sampled the next state st+1 = k, the corresponding obser-
vation ot+1 is then generated by sampling from a distribution that conditions on the next state and
current action:

ot+1 ∼ p(ot+1|st+1 = k, at = a) , Normal(µak, diag(σ2
ak)). (5)

Each action,state pair a, k has its own D-dimensional multivariate normal likelihood with mean
vector µak ∈ RD and a diagonal covariance matrix whose diagonal is set via the element-wise
squaring of standard deviation vector σak ∈ RD+ .

Termination. When the agent reaches a special terminal state, the POMDP generative process is
terminated. We denote the final timestep as T .

A.1 Computing forward beliefs.

Within a POMDP setting, the states remain hidden. However, given past actions and observations, we
can define a belief vector bt giving the probability of each of the K possible values for state st at
time t.

For the initial timestep t = 0, we have:

b0 = [b01, b02, . . . b0K], b0k , p(s0 = k|o0) (6)

Then, for subsequent timesteps t = {1, 2, . . . T}, we have:

bt = [bt1, bt2, . . . btK], btk , p(st = k|o0:t, a0:t−1) (7)

We call such belief vectors forward beliefs, because they are computed by looking “forward” at
timestep t given observations and actions from all previous timesteps.

Given an estimate of model parameters θ = τ, µ, σ, We can easily compute these beliefs via a
forward recusion formula defined below. Applying these recursions sequentially across timesteps
t = 0, 1, 2, . . . T is known as the forward algorithm in the hidden Markov model literature [Rabiner,
1989]. This is an instance of dynamic programming, where belief values at time t+ 1 are computed
from belief values at time t.

Base case: t = 0. The initial belief vector is computed via first computing a non-normalized vector
b̃0, and then normalizing to get a b0 that sums to one:

b̃0k = NormalPDF(o0|µ0k, diag(σ2
0k))τ0k for each k ∈ {1, 2, . . .K}. (8)

b0k =
b̃0k∑K
`=1 b̃0`

for each k ∈ {1, 2, . . .K}. (9)

Recursive case: t+ 1 > 0. We are given the previous belief bt, the chosen action at = a, where
a ∈ {1, 2, . . . A}, and then next observation ot+1. Then we compute bt+1 from bt via the following

b̃t+1,k = NormalPDF(ot+1|µak, diag(σ2
ak))

K∑
j=1

btjτajk for each k ∈ {1, 2, . . .K}. (10)

bt+1,k =
b̃t+1,k∑K
`=1 b̃t+1,`

, for each k ∈ {1, 2, . . .K

Thus, we have a simple procedure for updating our current belief about time t given a chosen action at
and next observation ot+1. We can write this recursive update concisely as a function belief_update:

bt+1 ← belief_update(bt, at, ot+1). (11)

A.2 POMDP value functions.

Within a POMDP, a policy π is a mapping from each possible state value st to a corresponding
discrete action at ∈ {1, 2, . . . A}. The agent seeks a policy that optimizes the expected infinite stream
of future discounted rewards, where discount factor γ ∈ (0, 1) indicates how much to downweight

5

rewards far in the future. Given a known state,action to next-state transition distribution T , the
expected value of a policy π that starts at state s0 is:

V (π, s0) =

∞∑
t=0

γt Est+1∼T (·|st,π(st))
[
r(st, π(st))

]
(12)

However, with POMDPs we do not know the initial state (or any state) exactly. We thus need to
develop a value function V (π, b0) which computes expected rewards given initial beliefs. Using the
beliefs defined above, the value function can then be written:

V (π, b0) =

∞∑
t=0

γt E st+1∼T (·|st,π(bt))
ot+1∼O(·|st+1,π(bt))

[
R(bt, π(bt))

]
, (13)

where we have defined the expected reward given belief as R(bt, at) ,
∑K
k=1 btkr(k, at). Each bt is

computed via the belief_update procedure in Eq. (10).

Given the per-belief value function V (π, b) in Eq. (13), we can derive a greedy policy for how to act
when the current belief vector is b:

π(b) = argmax
a

R(b, a) + γ
∑
o∈O

p(o|b, a)V (π, belief_update(b, a, o))

Here, we define the probability density of the next observation given current belief bt and current
action at as p(ot+1|bt, at) ,

∑K
j=1 btj

∑K
k=1 p(st+1 = k|st = j, at)p(ot+1|st+1 = k, at). In this

equation, we assume that observations come from a discrete space O, but it is easy to translate to a
continuous space by replacing sums with integrals.

It has been long recognized [Sondik, 1978] that the value function for a POMDP can be modeled
arbitrarily closely as the upper envelope of a finite set of linear functions of the belief vector. We
denote this set of piecewise functions as P , which has P total pieces. Following common notation,
we refer to each linear piece (indexed by p) via a corresponding vector αp ∈ RK of coefficients.

V (α, b) = max
αp∈P

bTαp (14)

Each αp-vector in the set P has a corresponding action ap associated with it, where ap ∈ {1, 2, . . . A}.
Thus, the given an accurate piecewise upper envelope, we can define the policy as π(b) = ap∗(b),
where p∗(b) = argmaxp b

Tαp. That is, always execute the action associated with the maximizing
α-vector.

B Additional Details on Point-Based Value Iteration

Point based value iteration (PBVI) is an algorithm for efficiently solving POMDPs [Pineau et al.,
2003]. See [Shani et al., 2013] for a thorough survey of related algorithms and extensions in this area.

In PBVI, we do not perform full Bellman backups over the space of all possible belief points, as this
is typically intractable. Instead, we will only perform backups at a fixed set of belief points. We first
list an equation that computes the value at a belief b after a Bellman backup over V , where we let ra
denote the vector R(·, a) and we let ba,o denote the result of a belief update, belief(b, a, o):

V ′(b) = maxa∈Ara · b+ γ
∑
o

p(o|b, a)V (ba,o) (15)

= maxa∈Ara · b+ γ
∑
o

maxα∈V b · αa,o, (16)

where αa,o(s) =
∑
s′ α(s

′)p(o|s′, a)p(s′|s, a). Then, we can use the computation of this value to
efficiently compute the new α-vector that would have been optimal for b, had we ran the complete
Bellman backup:

backup(V, b) = argmaxαba:a∈A,α∈V b · α
b
a (17)

αba = ra + γ
∑
o

argmaxαa,o:α∈V b · αa,o (18)

6

PBVI: Sampling Approximation to Deal with Complex Observation Models In normal PBVI,
we are limited by how complex our observation space is. The PBVI backup crucially depends on
a summation over observation space (or integration, for continuous observations). Dealing with
multi-dimensional, non-discrete observations is generally intractable to compute exactly.

Instead, we will utilize ideas from [Hoey and Poupart, 2005] to circumvent this issue. The main
idea is to learn a partition of observation space, where we group together various observations that,
conditional on a given belief b and taking an action a, would have the same maximizing α-vector.
That is, we want to learn Oα = {o|v = argmaxα∈V α · ba,o}. We can then treat this collection
of Oα as a set of “meta-observations”, which will allow us to replace the intractable sum/integral
over observation space into a sum over the number of α-vectors, by swapping out the p(o|b, a)
term from PBVI in (8) with p(Oα|b, a), the aggregate probability mass over all observations in the
“meta-observation”. In particular, we can express the value of a belief by the following now:

V (b) = maxara · b+ γ
∑
α

p(Oα|b, a)V (ba,Oα) (19)

p(Oα|b, a) =
∑
s

b(s)
∑
s′

p(s′|a, s)p(Oα|s′, a) (20)

ba,Oα ∝ p(Oα|a, s′)
∑
s

b(s)p(s′|s, a) (21)

p(Oα|a, s′) =
∑
o∈Oα

p(o|a, s′). (22)

We will make use of a sampling approximation that admits arbitrary observation functions in order to
approximate these Oα and (15), the aggregate probability of each “meta-observation”.

To do this, first we sample k observations ok ∼ p(o|s′, a), for each pair of states and actions. Then,
we can approximate p(Oα|a, s′) by the fraction of sampled ok where α was the optimal α-vector, ie

p(Oα|a, s′) ≈
|{ok : α = argmaxα∈V α · ba,ok}|

k
, (23)

where ties are broken by favoring the α-vector with lowest index. Using this approximate discrete
observation function, we can perform point-based backups for V at a set of beliefs B as before. Our
backup operation is now:

backup(V, b) = argmaxαba:a∈A,α∈V b · α
b
a (24)

αba = ra + γ
∑
α′

argmax
αa,Oα′

b · αa,Oα′ (25)

αa,Oα′ (s) =
∑
s′

α(s′)p(s′|s, a)p(Oα′ |a, s′). (26)

C Additional Details on Prediction-Constrained POMDPs

Given fixed model parameters θ, we use PBVI to obtain a policy defined by a collection of α-vectors.
However, we still need to estimate the value of this implied policy. We do this by using an off-policy
estimator, consistent weighted per-decision importance sampling (CWPDIS) [Thomas, 2015].

We assume in this initial work that we have a collection of data, Dbeh collected by following a known
behavior policy that takes action at with probability πbeh(at|o1:t, a1:t−1). We use a similar notation to
denote the action probabilities implied by our learned policy, πθ(at|o1:t, a1:t−1). Then the CWPDIS
estimate of the value of πθ is:

valueCWPDIS(πθ, πbeh,Dbeh, r, γ) ≡
T∑
t=1

γt−1
∑
n∈Dbeh rnt

∏t
j=1

πθ(anj |on,1:j ,an,1:j−1)
πbeh(anj |on,1:j ,an,1:j−1)∑

n∈Dbeh
∏t
j=1

πθ(anj |on,1:j ,an,1:j−1)
πbeh(anj |on,1:j ,an,1:j−1)

(27)

where T = max{Tn}. Since this objective is a differentiable function of the model parameters θ, it
can be optimized via first-order gradient ascent methods. Perturbing θ affects the action probabilities

7

for our learned policy πθ in two ways: by changing our current beliefs due to a different model of
the environment, and by changing the α-vectors that dictate which action to take. In order to take
gradients, we replace the argmax operations in the PBVI backups with softmax operations (in Eqs
16, 17, 18). Likewise we use a stochastic softmax policy, replacing the argmax over α-vectors when
applying our policy and choosing an action with a softmax. We start each of these four softmaxes
with a temperature of 1 that slowly anneals to a final temperature of 0.1.

Hyperparameters and other settings In this initial work, we optimize the objective in Eq 1 via
batch gradient ascent, using backtracking line search to choose the step size. To help improve
convergence to a good solution, at the start of optimization for both our PC method and the EM
baseline (2 stage EM+ in Figure 1) we decrease the variance of observation dimensions with high
correlation with observed rewards (i.e. dimension 1) and increase the variance of the other dimensions,
in order to encourage the optimizer to find the desired solution. We also run vanilla EM without
this addition (2 stage EM in Figure 1), but it performs much worse. For EM, we try 250 different
random initializations, and choose the one with best likelihood on a held-out validation set of 10, 000
trajectories. For our PC approach we try 25 different random initializations, and choose the one
with the best objective value (Eq 1) after a small number of gradient steps. During each gradient
computation, we perform 10 iterations of PBVI-based backups at a fixed set of 35 belief points evenly
spaced between (0.01, 0.99) (this is possible because K = 2). We use 100 samples to approximate
the likelihood in Eq 18. We learn the reward function separately from the other model parameters by
EM even for our PC methods.

Results in Figure 1 are means and standard errors averaged over 25 random seeds. We use γ = 0.9,
and use a sample size of 10, 000 for both Dbeh and Dexpl; both are generated according to random
policies that listen at each time with a fixed probability of 0.9, resulting in an average trajectory length
of 10. To evaluate the HMM we use a held-out test set of 10, 000, and to evaluate the learned policies,
we use 2, 500 trajectories generated using the same random number generator. We implemented our
methods using autograd (https://github.com/HIPS/autograd).

8

	Motivation and Background
	Proposed Method: Prediction-Constrained POMDP
	Synthetic Experiment: Noisy Tiger Problem
	Additional Details of POMDP model
	Computing forward beliefs.
	POMDP value functions.

	Additional Details on Point-Based Value Iteration
	Additional Details on Prediction-Constrained POMDPs

