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Part 3 outline: Challenges

M : “missing data”

I  : ”incomplete labels” (semisupervised learning)

M : “multimodal data”  (text + images + EHR codes)

I : “interpretability”

C : “causality”

S : “sequential decision making” (reinforcement learning)
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MLHC Challenge 1

Missing Data
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All supervised prediction methods we’ve 

discussed require each example’s 

features to be fully observed.

Problem: Medical data often missing,

and almost always not at random

• What are strategies?

• What models/methods are available?



Time-of-day for ordering blood 

test predicts survival 

Credit: Agniel, Kohane, & Weber 

BMJ 2018
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Low value + Ordered 3-6PM: >75% survival rate
Low value + Ordered 3-6AM: <25% survival rate

Need to capture human processes behind decisions to collect data!



Missingness predicts mortality

Credit: Che et al. 2018 Scientific Reports
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Imputation Strategies

•Fill with Population Mean

•Forward-carry

• Fill with nearest value from patient’s past

•Model-based

• Discriminative:

• Build predictor that imputes missing values given others

• Build embedding that is amenable to missing input

• Generative

• Draw samples of missing data
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Example: impute by predicting
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RF naturally handles 

multiple data types (real, 

categorical*, binary)
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GRU-D (Che et al. 2018)

RNN that deliberately handles missingness

Hours since last 
observation

Binary indicator
1 if missing

Observed features

Use case: ICU time series

GRU unit is a 

simple 

alternative to 

LSTM unit



GRU-D: Improvements over 

baseline imputation strategies 
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Credit: Che et al. 2018

RandForest (RF) very competitive at 0.83.



GAIN: Generative Adversarial 

Imputation Network
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GAN that deliberately represents missingness
Can draw samples!

Yoon et al. ICML 2018



GAIN: Data Representation
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GAIN: Generator
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G



GAIN: Discriminator
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D

probability that each 

value is fake or real

Discriminator predicts which values are fake (but needs some hints)



GAIN: Improvements over 

Baseline Imputation Strategies
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How good are imputations?
(lower = better)

How good are predictions 
with imputed data?

(higher = better)

UCI Credit dataset. 690 examples. 15 features (mix of real, cat, binary)

Fig. Credit: Yoon et al. 2018



Takeaways: Missing Data

•Know where your data comes from!

• Help your data scientist friends understand what 
missing values mean in the clinic.

•Some flexible methods exist; more work is 

needed. 

•Think about sanity checks for imputed values 

from any predictive system.
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MLHC Challenge 2

Incomplete Labels

Some examples have associated labels

Many more examples available, but have no labels

Expensive

Time-consuming

Dangerous (give drug to new patient)

Supervised learning can only use labeled set

Semi-supervised learning tries to learn from both!
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Possible Approaches

•Self-training

•Co-training

•Two stage: Pretrained features + classifier

•Generative models
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Self-training

1) Train predictor on labeled set

2) Predict outcomes for unlabeled data

3) Add “high confidence” predictions to 

labeled set

4) Return to (1)
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Very easy to do with any classifier. 

BUT probably a bad approach. Do we trust the predictor?



Co-training

REQUIRES

•Two “views” or modalities

• Image and text

•Each view predicts well on its own

•Each view is “independent” given label

•Add V1’s most confident predictions to V2’s 

training set, and vice versa
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Very easy to do with any classifier. 

BUT probably a bad approach. Do we trust the predictor?



Co-training + Active Sensing

0.73 = all labels available
0.62 = AUC when just use “fill with mean”
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Yu et al. “Bayesian co-training” JMLR 2011

Can we use predictions from demographic data to guess 

which patients we should image? 



Denoising Autoencoder

Credit: Beaulieu-Jones, Greene, et al. J. Biomed. Informatics 2016

147



2-stage Classifier using DA 
Features
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2-stage DA: Results on Simulated 

Data

with RBF kernel
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Mean Avg. Error

(lower is better)

Raw Input
size 6812

DA
size 256

2-stage DA: Results on ALS Data
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Cool Idea:

Disentangled Semi-supervised VAE

Visual Analogies
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Siddharth et al. NIPS 2017

Can model styles of handwriting (lots of unlabeled data).

Transfer those to different labels (using small labeled data).



Reproducibility for SSL?

Using only 4k labeled 

examples, but lots more 

effort on regularization, 

data augmentation

13.4%
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Results in literature might be overly optimistic.

Careful reproduction shows baselines much stronger than claimed.



When is SSL the right choice?
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Credit: Oliver et al. 2018



Takeaways: Incomplete Labels

•When can you do better with unlabeled data?

• Unlabeled & labeled from same distribution

• Large-enough validation set

•Should you spend months of research effort 

on:

• Applying tricks of trade (data augmentation)

• Trying different SSL methods with data you have

• Labeling more data?
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MLHC Challenge 3

Multiple Data Sources

• images

• genetics

• survey response

• mobile health

• note text

• diagnostic codes

• lab tests

• outcomes

Health records contain many types of data:

Multimodal machine learning

tries to bring these together
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https://arxiv.org/pdf/1705.09406.pdf
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https://arxiv.org/pdf/1705.09406.pdf


Multimodal ML: How to Represent?

Joint/Shared

Representation 

Coordinated but Separate

Representation 

Similarity

In Common Space
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Multimodal ML: How to predict?

• Early fusion

• concatenate features > feed to standard classifier

• Late fusion

• build separate classifiers > combine with meta classifier
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Example Joint Representation

EHR Analysis via Deep Poisson Factor Models
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DMPFA: a Hierarchical Topic Model

meds

RXNORM
size= 1694

253

lab tests

LOINC
size=4391

606

diagnoses/procedures

ICD/CPT
size=21,305

4,222

16,756 patients
With diabetes

Can we capture joint 
structure that leads to 
different EHR data?

Can we predict 
complications like:
• cardiovascular 

disease?

• … 
• (13 total)
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y
complications



Joint Representation Leads to  

Better Generative Model

treat each

modality

separate

concatenate

to one big 

vector

DMPFA

shared top-level 

representation
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Negative heldout likelihood (lower is better)



Joint Repr. Gives Better Predictions

treat each

modality

separate

concatenate

to one big 

vector

DMPFA

shared top-level 

representation
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Avg. AUC across 13 outcomes

(higher is better)

Model trained “discriminatively”

likelihoods for both data and labels



Better Predictions than Baselines
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Another Joint Repr. Example:

Multimodal learning for Cervical 

Cancer Diagnosis

Credit: Xu et al. MICCAI 2016
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Recurrent Attentive and Intensive Model

Xu et al. KDD 2018
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Joint Representations w/ Time series



Guide by domain knowledge

Top row: binary indicator of when labs ordered

Bottom:  binary indicator of when interventions ordered
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At each timestep:

• Which channels matter?

• Which previous times matter?
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RAIM Predictive Performance
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Multimodal ML: How to Represent?

Joint/Shared

Representation 

Coordinated but 

Separate

Representation 

Similarity

In Common Space
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Example Coordinated Embedding

Credit: Kiros, Saludinakov, Zemel DLWorkshop@NIPS 2014
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Example Coordinated Embedding
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Credit: Kiros, Saludinakov, Zemel DLWorkshop@NIPS 2014



Imagine possible health use:

- ventilator + fluids  =   ??
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Takeaway: Multimodal Representations

•When to use joint/shared repr.?

•When you have many modalities

• Easy to scale: linear with number of modalities

•When you want a generative model

•When to use coordinated-but-separate repr.?

• For two key modalities. More is hard.

• Too many pairs to coordinate!

• Inspecting how modalities are related

• analogies
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Takeaway: Multimodal predictions

•When to use early fusion?

• Low-level interactions between modalities useful
• Training data scarce

•When to use late fusion?

• Hard to access all raw modalities
• Low-level interactions between modalities

•When to use end-to-end learned 

representation?

• Large training set and validation set available
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MLHC Challenge 4

Interpretability

Interpretable machine learning
helps humans understand model predictions

Also called “Explainable AI”
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Position Papers
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Challenges

•What does ”interpretability” mean?

• How do I measure it?
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Approaches

Use models with understandable internals

Use complicated model, interpret post-hoc

Train deep model to get max “interpretability”
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SLIM:

Super-sparse Linear Integer Models 

Operational constraints
• SIZE: Use at most 5 features
• SIGN: Obey established relationships for individual features
• LOW FPR: Do not produce too many false positives

min

[w1...wD]

1

N

NX

n=1

loss(yn,

DX

d=1

wdxnd) +

X

d

is-non-zero(wd)

subject to : wd 2 {�10,�9,�8, . . . 0, . . . 8, 9, 10}
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SLIM for Sleep Apnea

Credit: Ustun & Rudin Machine Learn. 2016
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SLIM for Sleep Apnea

Credit: Ustun & Rudin Machine Learn. 2016
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Use models with understandable internals

Use complicated model, interpret post-hoc

Train deep model to get max “interpretability”
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How to interpret a fixed deep model?
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Olah et al. 2017
Google Brain



LIME: Local fit of linear model
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Model may have complex 

boundaries, but for specific 

example the boundary looks 

locally linear.

Local linear fit can be 

sparse (L1-reg. regression)

Credit: Ribeiro et al. KDD 2016



Sparsity of post-hoc linear model

indicates relevant features
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Credit: Ribeiro et al. KDD 2016



Use models with understandable internals

Use complicated model and interpret post-hoc

Train deep model to get max “interpretability”
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Attention mechanisms

Tell you what part of input model “looks at”

NOT the same thing as “why”
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Interpretability à Simulatability

Def: a model is simulatable if a human can

“take input data together with the parameters of 

the model and in reasonable time step through every

calculation required to produce a prediction” –

Lipton 2016

Advantages of simulation

- check each step against expert knowledge

- check predictions at counter-factual inputs

- what if the blood pressure was lower?

- identify dataset biases / causal leakage / etc
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Decision Trees are Simulatable
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decent predictions, but definitely inferior to modern deep methods
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Wu et al. AAAI 2018

Can we optimize RNNs so that their 

decision boundaries are easily 

explained by small decision trees?



Model: Recurrent Neural Net
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yt-1 yt yt+1



How to measure simulatability of deep models? 
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predict

train

1) Train tree to match the predictions of a deep model

2) Count tree’s average path length
= cost of simulating the average input example

count 2.1



Tree Regularization:

Penalize deep model’s (lack of) simulatability

195

train count 2.1

2.2

• Model step: given fixed                      , update W via gradient

• Surrogate step: given fixed W, retrain the 

How to train:



Tree Regularization:

tree-like decision boundaries for deep models 
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Tree-reg. finds sweet spot

high AUC & low path length
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Wu et al. AAAI 2018



Tree Proxy for Mech.Vent.
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Wu et al. AAAI 2018



Tree reg. finds sweet spot
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Wu et al. AAAI 2018



Takeaways: Interpretability

Really ask why you need interpretability

Define precise notion:
• Sparse model with few coefficients?
• Human simulatable?

Find precise, domain-specific evaluation
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MLHC Challenge 5

Causality

Possible goals of a personalized medicine strategy:

Individual treatment effect

Would the patient’s symptoms be reduced by drug A?

Average treatment effect

Would the average patient benefit if we prescribed drug A?

These “What if?” questions aren’t possible with supervised learning
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A Provocative Challenge
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Big Question: Can we do anything with observational data?



Potential Outcomes Framework

Neyman-Rubin model (Rubin 2011, Neyman 1923)

203

Y1 Y0

x features

Potential outcome

if untreated

Potential outcome

if treated



Potential Outcomes Framework

Neyman-Rubin model (Rubin 2011, Neyman 1923)
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Y1 Y0

x features

Factual outcome
Unobserved

counterfactual

t=0
Binary 

treatment 

indicator



Assumptions for Neyman-Rubin 

Framework

•Assumption 1: Common support

• No set of patient features leads to ZERO probability 
of treatment (or non-treatment)

•Assumption 2: No unmeasured confounders

• Also called conditional ignorability

• Treatments and potential outcomes are 
conditionally independent given features X
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Paper: Schulam & Saria NIPS 2017

Counterfactual Gaussian Process

Assumes measureable risk score, can be tracked over time

Goal: Model future trajectory of risk score given history

Outcomes are measured and actions are taken at irregular, discrete 
points in continuous-time

206



Compare CGP to supervised learning

Collect data 

under treatment 

policy A

Collect data 

under treatment 

policy B

Predictions from CGP are same regardless of the policy used to collect 

data

Baselines are unduly influenced by the observed treatments
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Collect data 

under treatment 

policy C which 

violates 

assumptions

When assumptions are violated, predictions become unreliable!

Compare CGP to supervised learning
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Paper:

•How to do causal inference when we have 
imperfect views (proxies) of confounders?
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treatment

outcome

proxy 

covariates

(e.g.

zip code, 

salary) hidden confounders

(e.g. socio-econ. status)

Credit: Louizos et al. NIPS ‘17



Approach: Model joint p(z, x, t, y)

Theorem: if we can estimate the joint, we can estimate causal effects

Need flexible model: Use a specialized deep generative model
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Credit: Louizos et al. NIPS ‘17



Causal VAE for fast inference
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Toy experiments show CE-VAE better at 

predicting avg. effect than baselines

CE-VAE real latent

CE-VAE binary latent (true model)

1000               3000                10000               30000
number of examples

True even when the latent space is “misspecified”
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Experiments on Twin birth data
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Takeaways
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Hard problem!

Assumptions are everything

Try to capture any confounders you can

Multiple views of confounders even better
e.g. zip code & salary & job title



MLHC Challenge 6

Reinforcement Learning
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Reinforcement Learning:

Train agent to repeatedly observe state and take action. 

Goal of high reward after many steps.

Recent successes:

AlphaGo, Atari
BIG QUESTION
Can we use RL for 
sequential treatment 
decisions in healthcare?



Taking actions to seek reward

Why is this hard?

•Positive reward may not be easily reached 

from starting state

•Exploration and exploitation needed

216
Not safe to explore in healthcare!



Early work in RL for clinical 

treatment

SIMULATION
• Ernst et al. (2006) : HIV drugs
• Escandell-Montero et al. (2014): Anemia

OBSERVATIONAL DATA
• Nemati et al. (2016):
• Heparin for Coagulation

• Shortreed et al. (Mach Learn 2011):
• Schizophrenia: clinical trial to select among 5 drugs

• Prasad et al. UAI 2017:
• Mech. Ventilator and Sedation, uses MIMIC

• Raghu et al. MLHC 2017:
• Sepsis treatment with fluids and vasopressors, uses MIMIC
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Emerging “Best Practices”
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Gottesman et al. arXiv 2018



RL for Sepsis

•Observed data
• Trajectories of 19k patients in ICU (MIMIC-III)

• All meet the Sepsis-3 Criteria

• 47 observed features (lab test values, vitals, demog.)

• Recorded every 4 hours

•Action space (Usual assumptions require discretizing)
• 5 discrete levels of IV fluids

• 5 discrete levels of vasopressors

• No treatment, medians of [0-25, 25-50, 50-7, 75-100] dosage 

quartiles

•Reward: Mortality
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time    1   2   3   4 … T-1   T
reward  0   0   0   0    0   +/-100



Off Policy Evaluation

Can we compute value (expected reward) of a 

new target policy A, using trajectories 

collected under different policy B?

Strategy: weighted average of all rewards

•Upweight patients who had similar trajectories 

to those suggested by policy A

Many estimators exist. Are they good?
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• Precup 2000

• Thomas & Brunskill 2016



Compare RL policy to baselines
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Can’t distinguish random policy from no action

E
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d



U-curve comparisons

222



U curve with naïve baselines
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1) Sicker patients get higher dosages!

2) Discretizing dosages by quantile bad.



Takeaways

•Choose good representations and actions

• Err on side of capturing all potential confounders

•Work closely (clinicians & MLers) throughout 

process, especially when making simplifying 

assumptions

•With observational data, we can’t expect RL 

to magically find an ideal policy; can maybe 

mimic the best clinicians at their best 

moments
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