

Machine Learning for Clinicians:

Advances for Multi-Modal Health Data

Michael C. Hughes

A Tutorial at MLHC 2018, August 16, 2018

PART 3: Methods that Address Challenges in Health Data

Missing data, incomplete data, multimodal data, interpretability, causality, sequential decision-making

Slides / Resources / Bibliography: https://michaelchughes.com/mlhc2018_tutorial.html

Part 3 outline: Challenges

- M : "missing data"
- I: "incomplete labels" (semisupervised learning)
- M: "multimodal data" (text + images + EHR codes)
- I: "interpretability"
- C: "causality"
- S: "sequential decision making" (reinforcement learning)

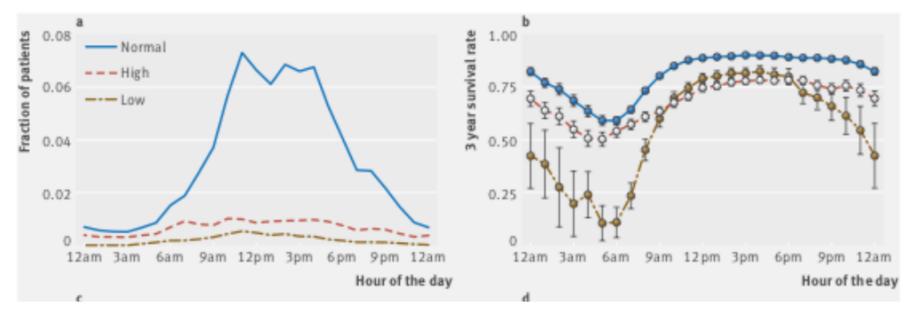
MLHC Challenge 1 Missing Data

All supervised prediction methods we've discussed require each example's features to be **fully observed**.

Problem: Medical data often missing, and almost always not at random

- What are strategies?
- What models/methods are available?

Time-of-day for ordering blood test predicts survival



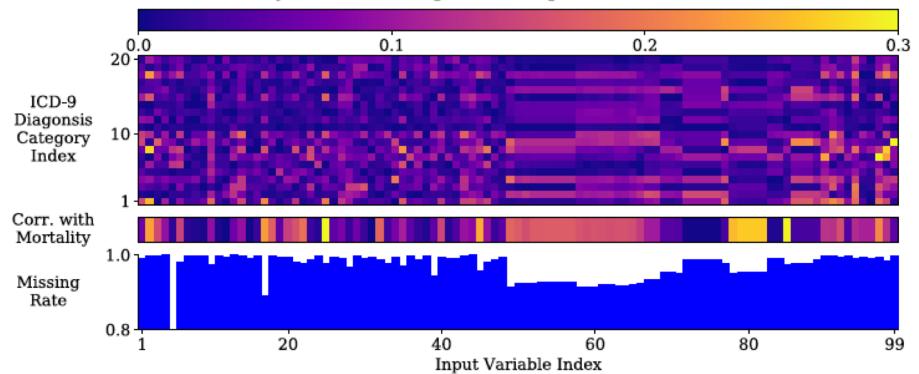
Low value + Ordered 3-6PM: >75% survival rate Low value + Ordered 3-6AM: <25% survival rate

Need to capture human processes behind decisions to collect data!

Credit: Agniel, Kohane, & Weber BMJ 2018

Missingness predicts mortality

Absolute Values of Pearson Correlations between Variable Missing Rates and Labels (Mortality and ICD-9 Diagonsis Categories on MIMIC-III Dataset)



Credit: Che et al. 2018 Scientific Reports

Imputation Strategies

- Fill with Population Mean
- Forward-carry
 - Fill with nearest value from patient's past

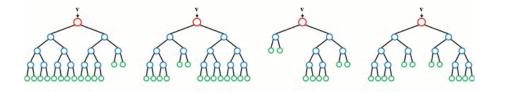
- Model-based
 - Discriminative:
 - Build predictor that imputes missing values given others
 - Build embedding that is amenable to missing input
 - Generative
 - Draw samples of missing data

Example: impute by predicting

MissForest—non-parametric missing value imputation for mixed-type data @

Daniel J. Stekhoven 🖾, Peter Bühlmann

Bioinformatics, Volume 28, Issue 1, 1 January 2012, Pages 112–118, https://doi.org/10.1093/bioinformatics/btr597 Published: 28 October 2011 Article history ▼

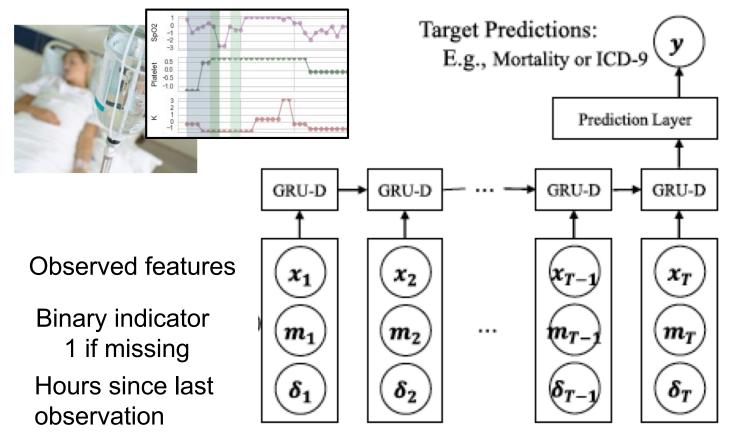


RF naturally handles multiple data types (real, categorical*, binary)

GRU-D (Che et al. 2018)

GRU unit is a simple alternative to LSTM unit

Use case: ICU time series



RNN that deliberately handles *missingness*

GRU-D: Improvements over baseline imputation strategies

Non-RNN Models	s	RNN Models				
Mortality Predictio	m On MIMIC-III Data	LSTM-Mean	0.8142 ± 0.014			
LR-Mean	0.7589 ± 0.015	0.015 RF-Mean 0.8293±0.004		GRU-Mean	0.8252 ± 0.011	
LR-Forward	0.7792 ± 0.018	RF-Forward	0.8303 ± 0.003	GRU-Forward	0.8192 ± 0.013	
LR-Simple	0.7715 ± 0.015	RF-Simple	0.8294 ± 0.007	GRU-Simple w/o δ^{22}	$\begin{array}{c} 0.8367 \pm 0.009 \\ 0.8266 \pm 0.009 \\ 0.8380 \pm 0.008 \end{array}$	
LR-SoftImpute	0.7598 ± 0.017	RF-SoftImpute	0.7855 ± 0.011	GRU-Simple w/o m ^{23,24}		
LR-KNN	0.6877 ± 0.011	RF-KNN	0.7135 ± 0.015	GRU-Simple		
LR-CubicSpline	0.7270 ± 0.005	RF-CubicSpline	0.8339 ± 0.007	GRU-CubicSpline	0.8180 ± 0.011	
LR-MICE	0.6965 ± 0.019	RF-MICE	0.7159 ± 0.005	GRU-MICE	0.7527 ± 0.015	
LR-MF	0.7158 ± 0.018	RF-MF	0.7234 ± 0.011	GRU-MF	0.7843 ± 0.012	
LR-PCA 0.7246±0.014 RF-		RF-PCA	0.7747 ± 0.009	GRU-PCA	0.8236 ± 0.007	
LR-MissForest	0.7279 ± 0.016	0.7279±0.016 RF-MissForest		GRU-MissForest	0.8239 ± 0.006	
				Proposed GRU-D	0.8527 ± 0.003	

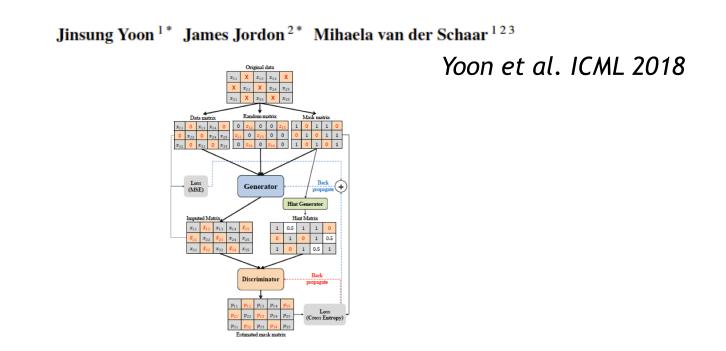
Table 1. Model performances measured by AUC score (mean \pm std) for mortality prediction.

Credit: Che et al. 2018

RandForest (RF) very competitive at 0.83.

GAIN: Generative Adversarial Imputation Network

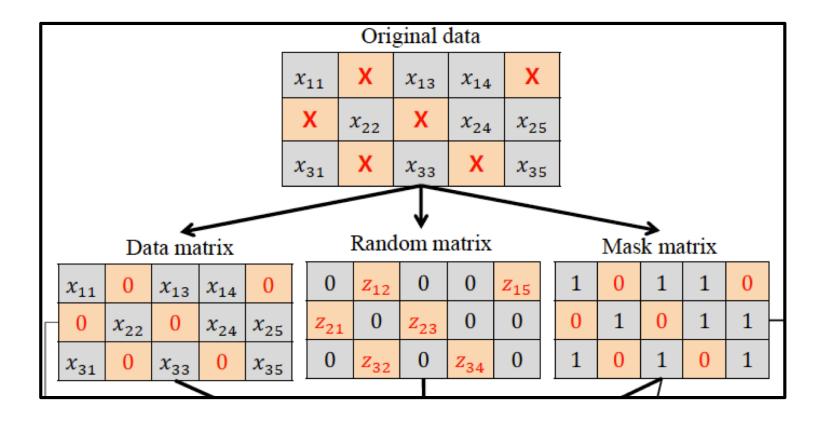
GAIN: Missing Data Imputation using Generative Adversarial Nets



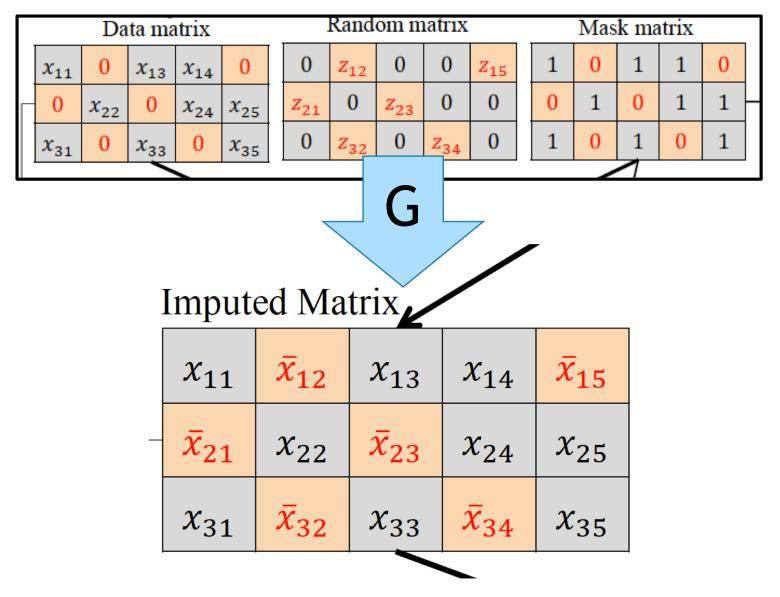
GAN that deliberately represents *missingness*

Can draw samples!

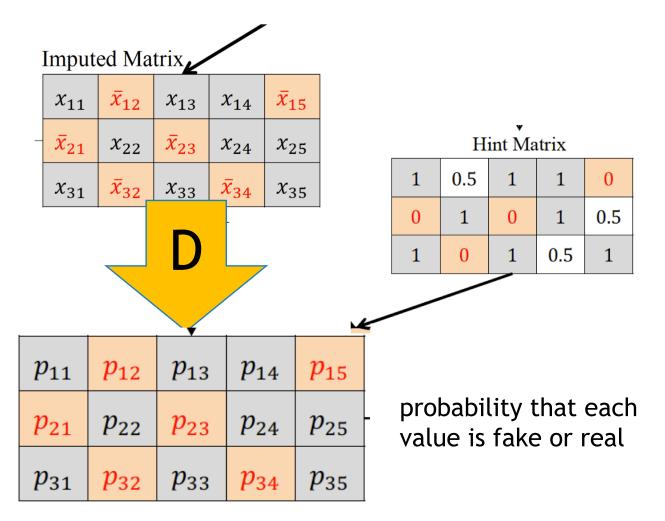
GAIN: Data Representation



GAIN: Generator



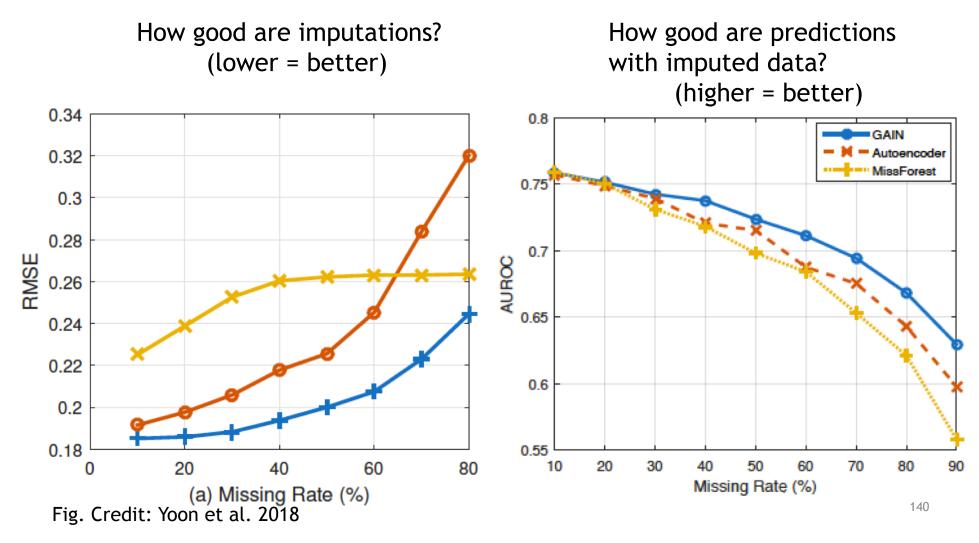
GAIN: Discriminator



Discriminator predicts which values are fake (but needs some hints)

GAIN: Improvements over Baseline Imputation Strategies

UCI Credit dataset. 690 examples. 15 features (mix of real, cat, binary)



Takeaways: Missing Data

- Know where your data comes from!
 - Help your data scientist friends understand what missing values mean in the clinic.
- Some flexible methods exist; more work is needed.
- Think about sanity checks for imputed values from any predictive system.

MLHC Challenge 2 Incomplete Labels

Some examples have associated labels

Many more examples available, but have no labels Expensive Time-consuming Dangerous (give drug to new patient)

Supervised learning can only use labeled set

Semi-supervised learning tries to learn from both!

Possible Approaches

- Self-training
- Co-training
- Two stage: Pretrained features + classifier
- Generative models

Self-training

- 1) Train predictor on labeled set
- 2) Predict outcomes for unlabeled data
- 3) Add "high confidence" predictions to labeled set
- 4) Return to (1)

Very easy to do with any classifier. BUT probably a bad approach. Do we trust the predictor?

Co-training

REQUIRES

- Two "views" or modalities
 - Image and text
- Each view predicts well on its own
- Each view is "independent" given label
- Add V1's most confident predictions to V2's training set, and vice versa

Very easy to do with any classifier. BUT probably a bad approach. Do we trust the predictor?

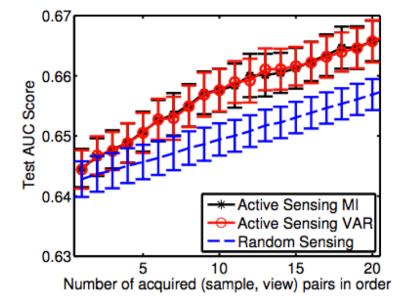
Co-training + Active Sensing

Yu et al. "Bayesian co-training" JMLR 2011

Feature	Description	View	
GENDER	1-Male, 2-Female	1st	
WHO	WHO performance status	1st	
FEV1	Forced expiratory volume	1st	
	in 1 second		
GTV	Gross tumor volume	2nd	
NPLN	Number of positive	2nd	
	lymph node stations	2110	

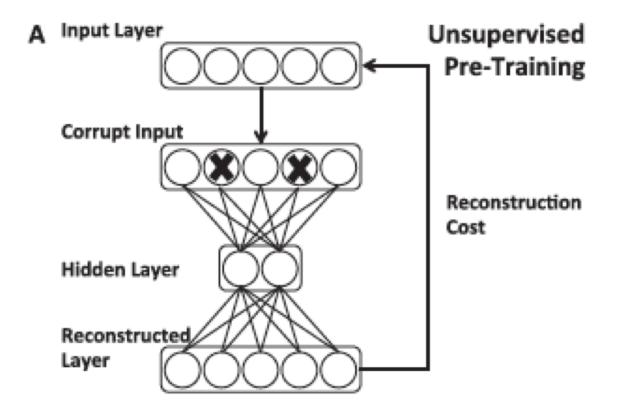
0.73 = all labels available

0.62 = AUC when just use "fill with mean"



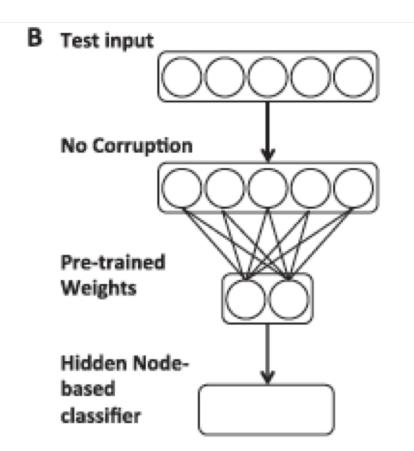
Can we use predictions from demographic data to guess which patients we should image?

Denoising Autoencoder



Credit: Beaulieu-Jones, Greene, et al. J. Biomed. Informatics 2016

2-stage Classifier using DA Features

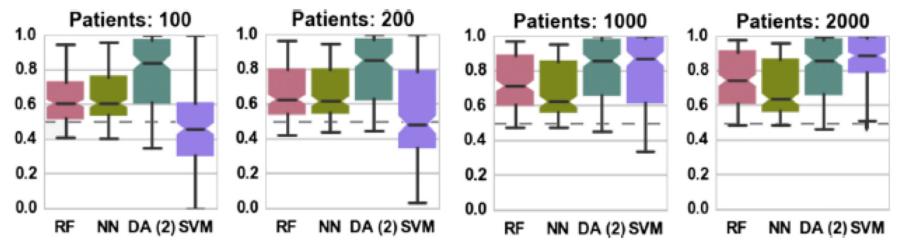


2-stage DA: Results on Simulated Data

Table 2

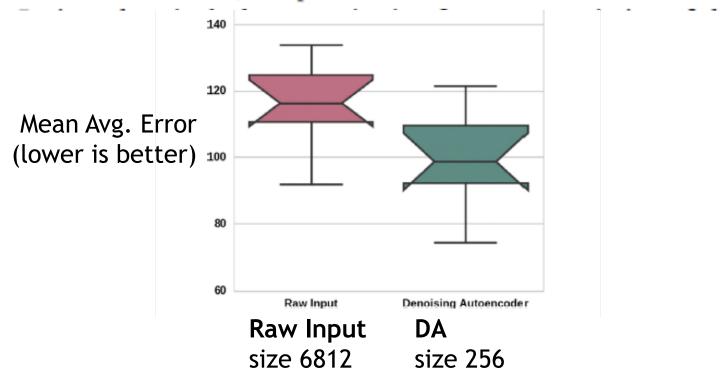
Mean receiver operating curve area under curve by method under simulation model 1.

Patients	DA + RF	Random forest	Support vector machine
100	0.618	0.653	0.504 with RBF kernel
200	0.637	0.610	0.449
500	0.677	0.690	0.663
1000	0.774	0.717	0.776
2000	0.755	0.736	0.862



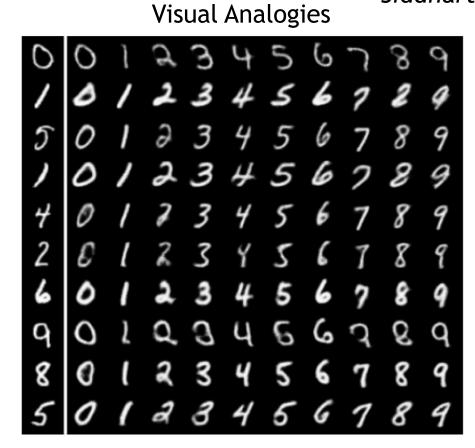
2-stage DA: Results on ALS Data

The PRO-ACT dataset includes 23 clinical trials covering 10,723 patients. We limit our survival analysis to the 3398 patients with known death information, but perform unsupervised pre-training of the DA with all 10,723 patients.



Cool Idea: Disentangled Semi-supervised VAE

Siddharth et al. NIPS 2017



Can model **styles** of handwriting (lots of unlabeled data). Transfer those to different labels (using small labeled data).

Reproducibility for SSL?

Realistic Evaluation of Semi-Supervised Learning Algorithms

Avital Oliver^{*12} Augustus Odena^{*1} Colin Raffel^{*1} Ekin D. Cubuk¹ Ian J. Goodfellow¹

Method	CIFAR-10 4k Labels			
П-М (Sajjadi et al., 2016b)	11.29%			
П-М (Laine & Aila, 2017)	12.36%			
MT (Tarvainen & Valpola, 2017)	12.31%			
VAT (Miyato et al., 2017)	11.36%			
VAT + EM (Miyato et al., 2017)	10.55%			
Results above this line cannot be directly compared to those belo				

Supervised

VAT + EM

Mean Teacher

Pseudo-Label

Π-Model

VAT

Using only 4k labeled examples, but lots more effort on regularization, data augmentation

13.4%

Results in literature might be overly optimistic. Careful reproduction shows baselines much stronger than claimed.

 $20.26 \pm 0.38\%$

 $16.37 \pm 0.63\%$ $15.87 \pm 0.28\%$

 $13.86 \pm 0.27\%$

 $13.13 \pm 0.39\%$

 $17.78 \pm 0.57\%$

When is SSL the right choice?

Our discoveries also hint towards settings where SSL is most likely the right choice for practitioners:

- When there are no high-quality labeled datasets from similar domains to use for fine-tuning.
- When the labeled data is collected by sampling i.i.d. from the pool of the unlabeled data, rather than coming from a (slightly) different distribution.
- When the labeled dataset is large enough to accurately estimate validation accuracy, which is necessary when doing model selection and tuning hyperparameters.

Credit: Oliver et al. 2018

Takeaways: Incomplete Labels

- When can you do better with unlabeled data?
 - Unlabeled & labeled from same distribution
 - Large-enough validation set

- Should you spend months of research effort on:
 - Applying tricks of trade (data augmentation)
 - Trying different SSL methods with data you have
 - Labeling more data?

MLHC Challenge 3 Multiple Data Sources

Health records contain many types of data:

- images
- genetics
- survey response
- mobile health

- note text
- diagnostic codes
- lab tests
 - outcomes

Multimodal machine learning tries to bring these together

Multimodal Machine Learning: A Survey and Taxonomy

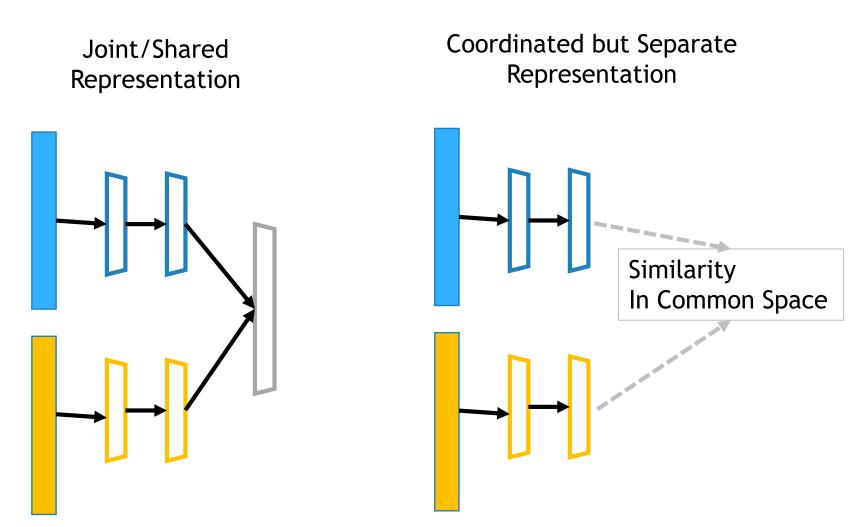
Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency

Abstract—Our experience of the world is multimodal - we see objects, hear sounds, feel texture, smell odors, and taste flavors. *Modality* refers to the way in which something happens or is experienced and a research problem is characterized as *multimodal* when it includes multiple such modalities. In order for Artificial Intelligence to make progress in understanding the world around us, it needs to be able to interpret such multimodal signals together. *Multimodal machine learning* aims to build models that can process and relate information from multiple modalities. It is a vibrant multi-disciplinary field of increasing importance and with extraordinary potential. Instead of focusing on specific multimodal applications, this paper surveys the recent advances in multimodal machine learning itself and presents them in a common taxonomy. We go beyond the typical early and late fusion categorization and identify broader challenges that are faced by multimodal machine learning, namely: representation, translation, alignment, fusion, and co-learning. This new taxonomy will enable researchers to better understand the state of the field and identify directions for future research.

Index Terms-Multimodal, machine learning, introductory, survey.

https://arxiv.org/pdf/1705.09406.pdf

Multimodal ML: How to Represent?



Multimodal ML: How to predict?

• Early fusion

• concatenate features > feed to standard classifier

- Late fusion
 - build separate classifiers > combine with meta classifier

Example Joint Representation

EHR Analysis via Deep Poisson Factor Models

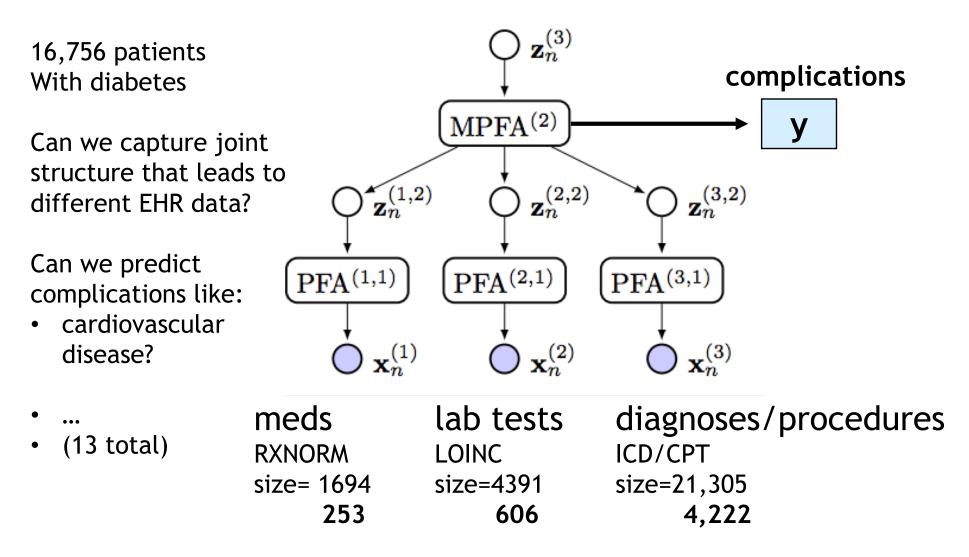
Electronic Health Record Analysis via Deep Poisson Factor Models

Ricardo Henao R.HENAO@DUKE.EDU Electrical and Computer Engineering Department Duke University Durham, NC 27708, USA James T. Lu JAMES.LU@DUKE.EDU School of Medicine Electrical and Computer Engineering Department Duke University Durham, NC 27708, USA Joseph E. Lucas JOE@STAT.DUKE.EDU Electrical and Computer Engineering Department Duke University Durham, NC 27708, USA **Jeffrey Ferranti** JEFFREY.FERRANTI@DM.DUKE.EDU School of Medicine Duke University Durham, NC 27708, USA Lawrence Carin LCARIN@DUKE.EDU Electrical and Computer Engineering Department

Duke University

Durham, NC 27708, USA

DMPFA: a Hierarchical Topic Model



Joint Representation Leads to Better Generative Model

	treat each modality separate		concatenate to one big vector			DMPFA shared top-level representation			
Size	Med	Lab	Code	Med	Lab	Code	Med	Lab	Code
64–32	1.930	76.724	210.690	1.930	76.575	208.785	1.865	72.919	194.260
96 - 48	1.851	76.736	192.851	1.825	76.787	193.782	1.788	72.662	176.737
128 - 64	1.803	76.538	182.803	1.759	76.495	182.049	1.748	72.415	167.423
64 - 32 - 16	1.918	76.648	207.932	1.911	76.400	209.652	1.861	72.773	191.854
96 - 48 - 24	1.822	76.967	192.530	1.816	76.660	192.505	1.759	72.531	176.451
128 - 64 - 32	1.787	76.556	182.365	1.764	76.528	180.806	1.730	72.364	166.759

Negative heldout likelihood (lower is better)

Joint Repr. Gives Better Predictions

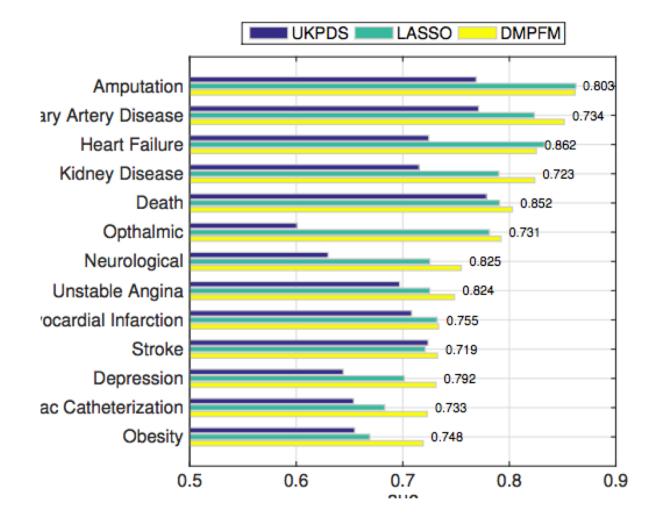
treat each modality separate		concatenate to one big vector		DMPFA shared top-level representation	
Size	Med	Lab	Code	All	All
64 - 32	$0.592{\pm}0.05$	$0.594{\pm}0.05$	$0.745{\pm}0.06$	0.751 ± 0.06	$0.771 {\pm} 0.07$
96 - 48	$0.596{\pm}0.04$	$0.583{\pm}0.05$	$0.727{\pm}0.06$	0.750 ± 0.06	$0.781 {\pm} 0.06$
128 - 64	$0.590{\pm}0.04$	$0.590{\pm}0.05$	$0.725{\pm}0.06$	0.751 ± 0.06	$0.779 {\pm} 0.06$
64 - 32 - 16	$0.601 {\pm} 0.05$	$0.594{\pm}0.05$	$0.726{\pm}0.05$	0.742 ± 0.06	$0.771 {\pm} 0.06$
96 - 48 - 24	$0.587{\pm}0.04$	$0.588{\pm}0.06$	$0.735{\pm}0.06$	0.758 ± 0.07	$0.785{\pm}0.07$
128 - 64 - 32	$0.590{\pm}0.04$	$0.588{\pm}0.05$	$0.732{\pm}0.05$	0.757 ± 0.06	$0.784{\pm}0.07$
	Outcome	<u>f</u>			

Acute Myocardial Infarction Amputation Cardiac Catheterization Coronary Artery Disease Depression Heart Failure Kidney Disease Neurological Diseases Obesity Ophthalmic Disease Stroke Unstable Angina Death

Avg. AUC across 13 outcomes (higher is better)

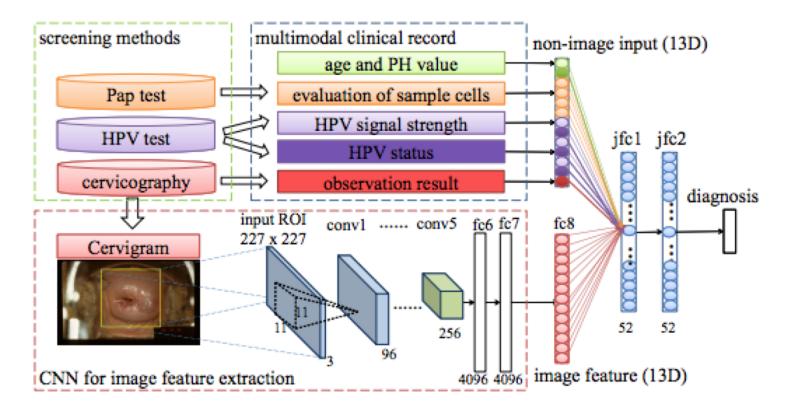
Model trained "discriminatively" likelihoods for both data and labels

Better Predictions than Baselines



165

Another Joint Repr. Example: Multimodal learning for Cervical Cancer Diagnosis



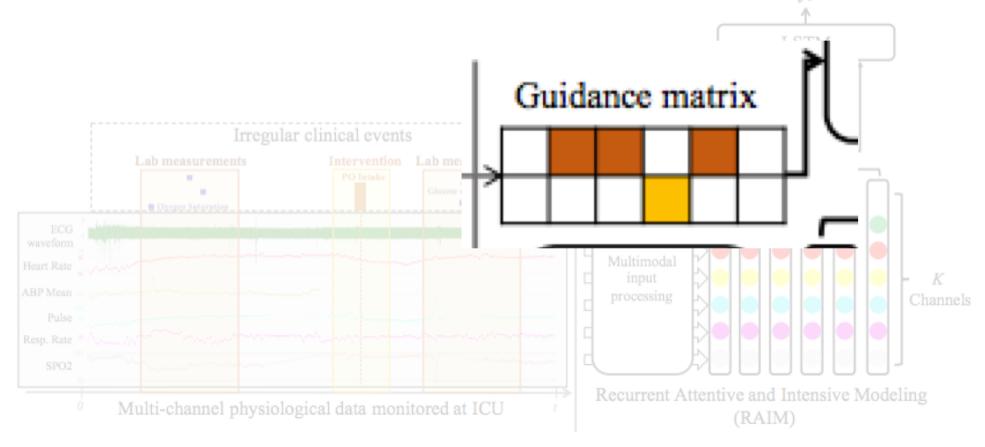
Credit: Xu et al. MICCAI 2016

Joint Representations w/ Time series

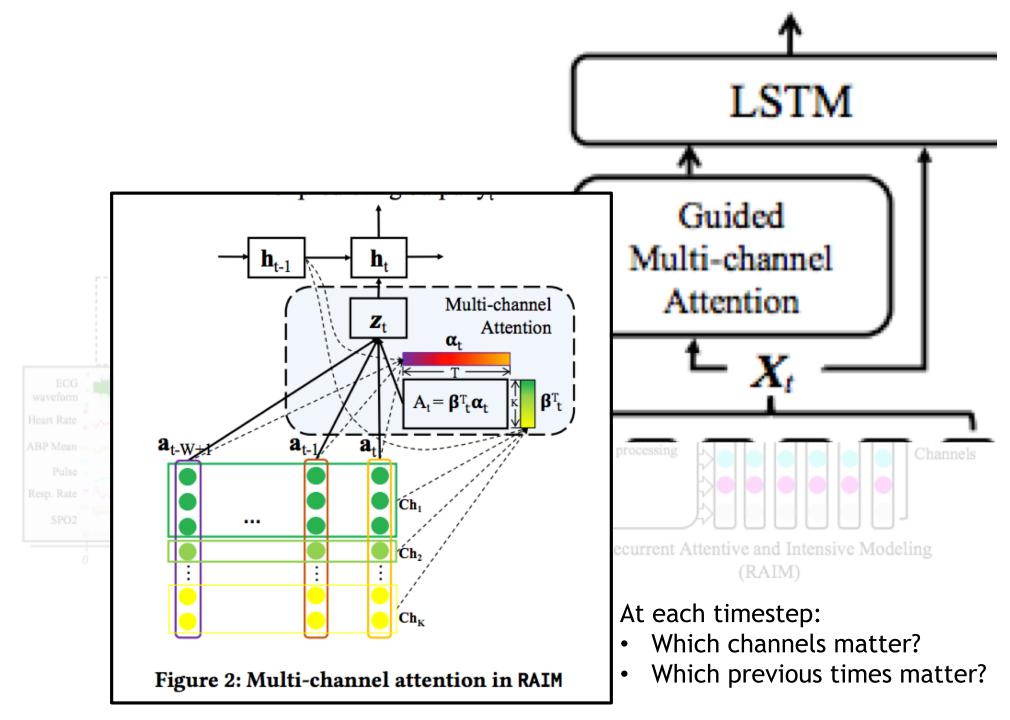


Figure 1: An overview of RAIM on multimodal continuous patient monitoring data.

Guide by domain knowledge



Top row: binary indicator of when labs ordered Bottom: binary indicator of when interventions ordered

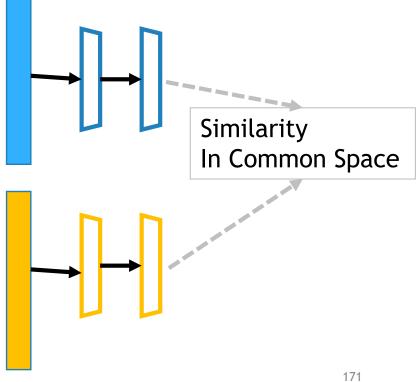


RAIM Predictive Performance

	Decompensation			Length of Stay	
	AUC-ROC	AUC-PR	Accuracy	Kappa	Accuracy
CNN (ECG)	87.84%	21.56%	88.38%	0.7681	82.16%
CNN-RNN	87.45%	23.19%	88.25%	0.8027	85.34%
CNN-AttRNN	88.19%	25.81%	89.28%	0.8186	84.89%
RAIM-0	87.81%	25.56%	88.96%	0.8125	85.84%
RAIM-1	88.25%	25.61%	88.91%	0.8215	86.74%
RAIM-2	88.77%	26.85%	90.27%	0.8217	85.21%
RAIM-3	90.18%	27.93%	90.89%	0.8291	86.82%

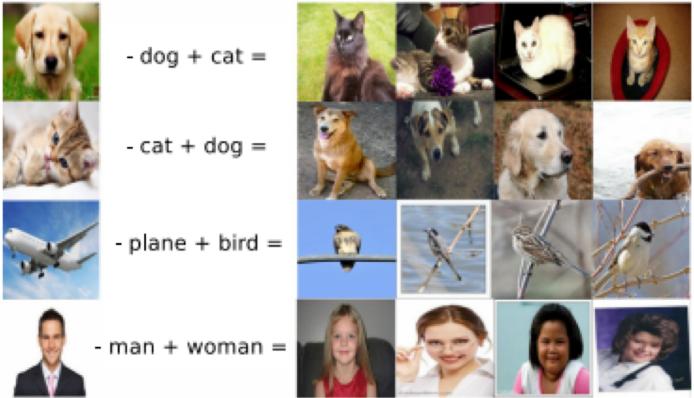
Multimodal ML: How to Represent?

Joint/Shared Representation Coordinated but Separate Representation



Example Coordinated Embedding

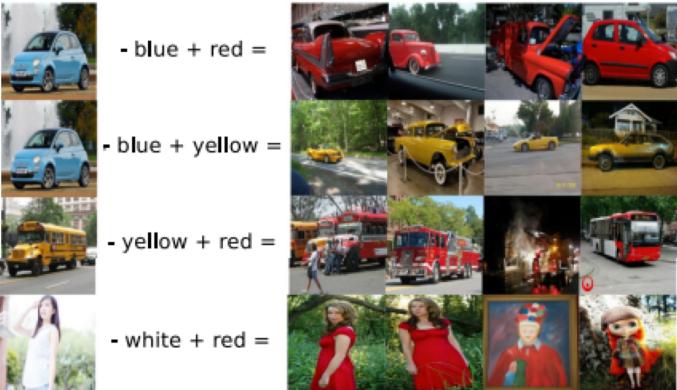
Nearest images



Credit: Kiros, Saludinakov, Zemel DLWorkshop@NIPS 2014

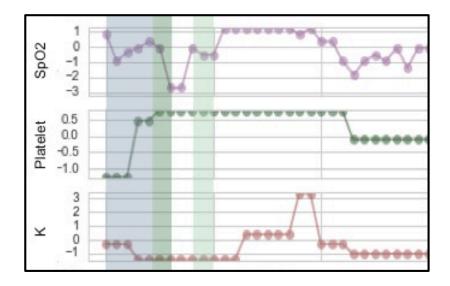
Example Coordinated Embedding

Nearest images



Credit: Kiros, Saludinakov, Zemel DLWorkshop@NIPS 2014

Imagine possible health use:



- ventilator + fluids = ??

Takeaway: Multimodal Representations

- When to use joint/shared repr.?
 - When you have many modalities
 - Easy to scale: linear with number of modalities
 - When you want a generative model
- When to use coordinated-but-separate repr.?
 - For two key modalities. More is hard.
 - Too many pairs to coordinate!
 - Inspecting how modalities are related
 - analogies

Takeaway: Multimodal predictions

- When to use early fusion?
 - Low-level interactions between modalities useful
 - Training data scarce
- When to use late fusion?
 - Hard to access all raw modalities
 - Low-level interactions between modalities
- When to use end-to-end learned representation?
 - Large training set and validation set available

MLHC Challenge 4 Interpretability

Interpretable machine learning helps humans understand model predictions

Also called "Explainable AI"

Position Papers

Towards A Rigorous Science of Interpretable Machine Learning

Finale Doshi-Velez* and Been Kim*

The Mythos of Model Interpretability

Zachary C. Lipton¹

Challenges

- What does "interpretability" mean?
 - How do I measure it?

Approaches

Use models with understandable internals

Use complicated model, interpret post-hoc

Train deep model to get max "interpretability"

SLIM: Super-sparse Linear Integer Models

$$\min_{[w_1\dots w_D]} \qquad \frac{1}{N} \sum_{n=1}^N \operatorname{loss}(y_n, \sum_{d=1}^D w_d x_{nd}) + \sum_d \operatorname{is-non-zero}(w_d)$$

subject to : $w_d \in \{-10, -9, -8, \dots, 0, \dots, 8, 9, 10\}$

Operational constraints

- SIZE: Use at most 5 features
- SIGN: Obey established relationships for individual features
- LOW FPR: Do not produce too many false positives

SLIM for Sleep Apnea

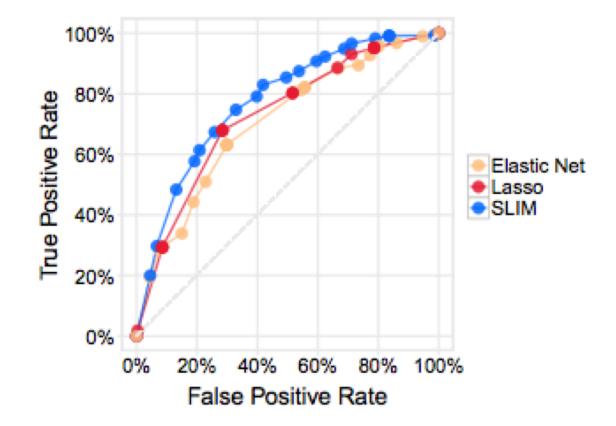
PREDICT PATIENT HAS OBSTRUCTIVE SLEEP APNEA IF SCORE > 1

1.	$age \ge 60$	4 points		•••••
2.	hypertension	4 points	+	
3.	body mass index ≥ 30	2 points	+	
4.	body mass index ≥ 40	2 points	+	
5.	female	-6 points	+	
	ADD POINTS FROM ROWS 1 – 5	SCORE	=	•••••

Fig. 8: SLIM scoring system for sleep apnea screening. This model achieves a 10-CV mean test TPR/FPR of 61.4/20.9%, obeys all operational constraints, and was trained without parameter tuning. It also generalizes well due to the simplicity of the hypothesis space: here the training TPR/FPR of the final model is 62.0/19.6%.

Credit: Ustun & Rudin Machine Learn. 2016

SLIM for Sleep Apnea



Credit: Ustun & Rudin Machine Learn. 2016

Use models with understandable internals

Use complicated model, interpret post-hoc

Train deep model to get max "interpretability"

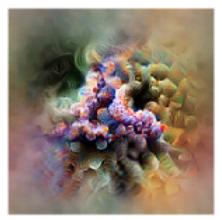
How to interpret a **fixed** deep model?

Olah et al. 2017 Google Brain

Dataset Examples show us what neurons respond to in practice

Optimization isolates the causes of behavior from mere correlations. A neuron may not be detecting what you initially thought.

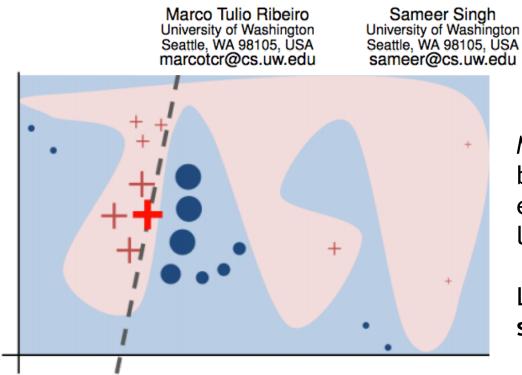




Baseball—or stripes? mixed4a, Unit 6 Animal faces—or snouts? *mixed4a, Unit 240* Clouds—or fluffiness? mixed4a, Unit 453

LIME: Local fit of linear model

"Why Should I Trust You?" Explaining the Predictions of Any Classifier



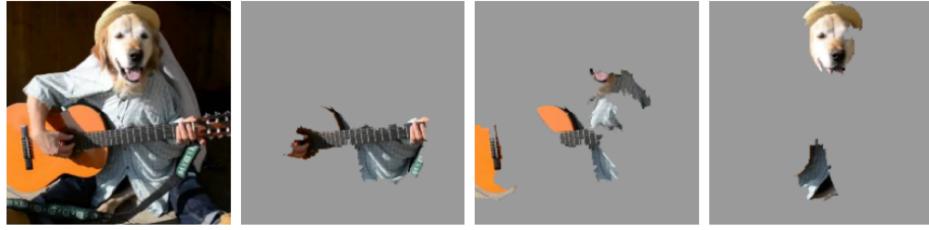
Carlos Guestrin University of Washington Seattle, WA 98105, USA guestrin@cs.uw.edu

Model may have complex boundaries, but for specific example the boundary looks locally linear.

Local linear fit can be **sparse** (L1-reg. regression)

Credit: Ribeiro et al. KDD 2016

Sparsity of post-hoc linear model indicates relevant features



(a) Original Image (b) Explaining *Electric guitar* (c) Explaining *Acoustic guitar* (d) Explaining *Labrador*

Figure 4: Explaining an image classification prediction made by Google's Inception neural network. The top 3 classes predicted are "Electric Guitar" (p = 0.32), "Acoustic guitar" (p = 0.24) and "Labrador" (p = 0.21)

Credit: Ribeiro et al. KDD 2016

Use models with understandable internals

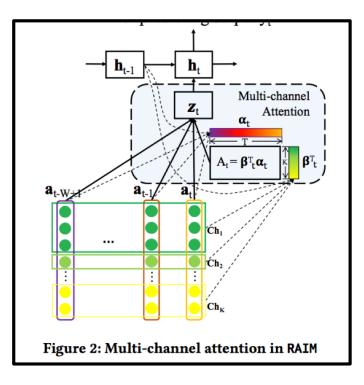
Use complicated model and interpret post-hoc

Train deep model to get max "interpretability"

Attention mechanisms

Tell you what part of input model "looks at"

NOT the same thing as "why"



Interpretability **>** Simulatability

Def: a model is **simulatable** if a human can "take input data together with the parameters of the model and in *reasonable* time step through *every* calculation required to produce a prediction" -*Lipton 2016*

Advantages of simulation

- check each step against expert knowledge
- check predictions at counter-factual inputs
 - what if the blood pressure was lower?
- identify dataset biases / causal leakage / etc

Decision Trees are Simulatable



decent predictions, but definitely inferior to modern deep methods

Beyond Sparsity: Tree Regularization of Deep Models for Interpretability

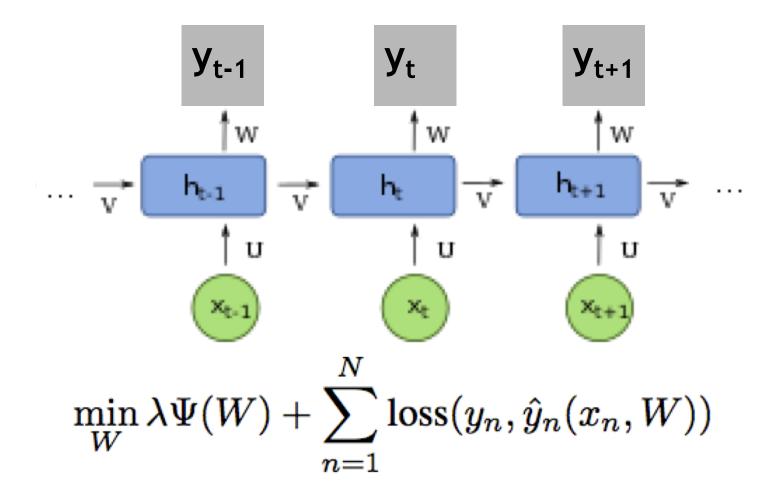
Mike Wu¹, Michael C. Hughes², Sonali Parbhoo³, Maurizio Zazzi⁴, Volker Roth³, and Finale Doshi-Velez²

¹Stanford University, wumike@cs.stanford.edu ²Harvard University SEAS, mike@michaelchughes.com, finale@seas.harvard.edu ³University of Basel, {sonali.parbhoo,volker.roth}@unibas.ch ⁴University of Siena, maurizio.zazzi@unisi.it

Wu et al. AAAI 2018

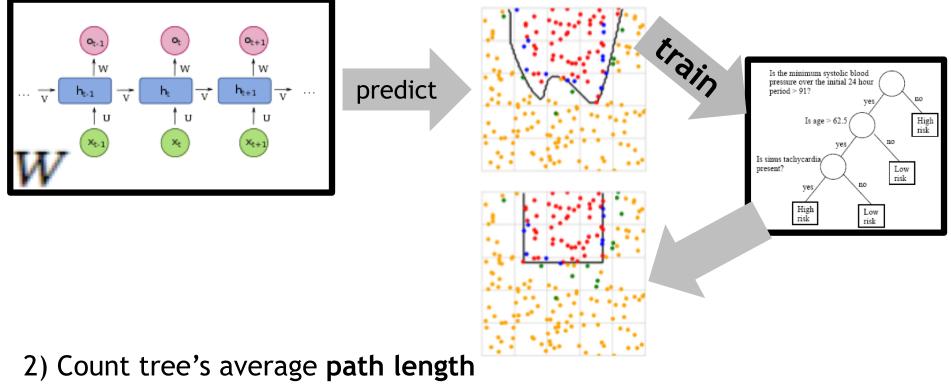
Can we *optimize* RNNs so that their decision boundaries are easily explained by small decision trees?

Model: Recurrent Neural Net



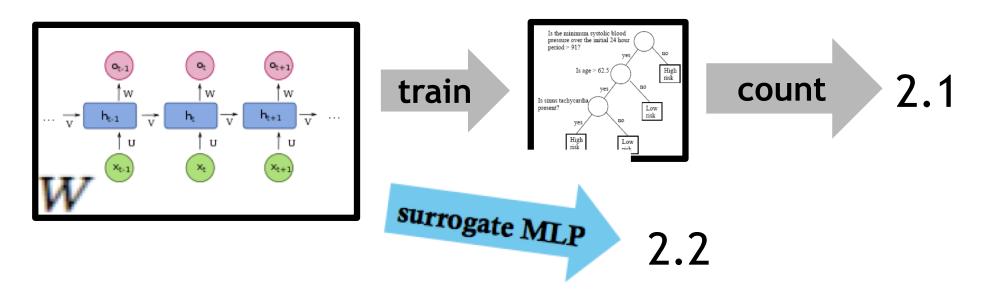
How to measure simulatability of deep models?

1) Train tree to match the predictions of a deep model



= cost of simulating the average input example

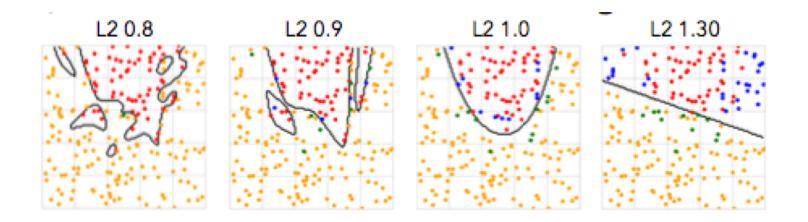
Tree Regularization: Penalize deep model's (lack of) simulatability

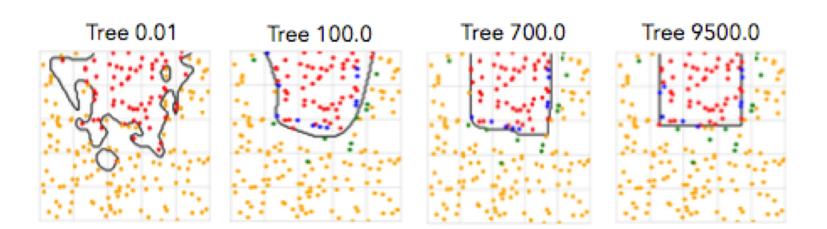


How to train:

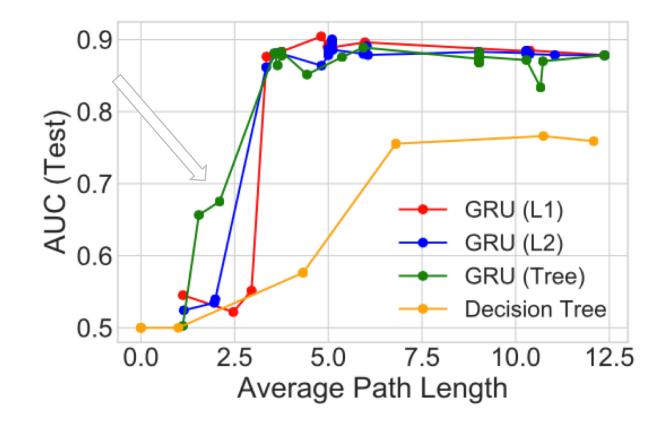
- Model step: given fixed Surrogate MLP, update W via gradient
- Surrogate step: given fixed W, retrain the

Tree Regularization: tree-like decision boundaries for deep models





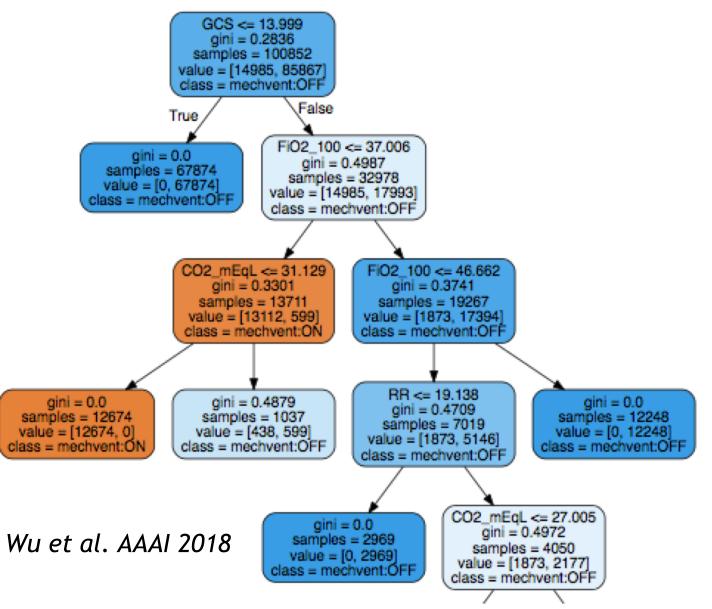
Tree-reg. finds sweet spot high AUC & low path length



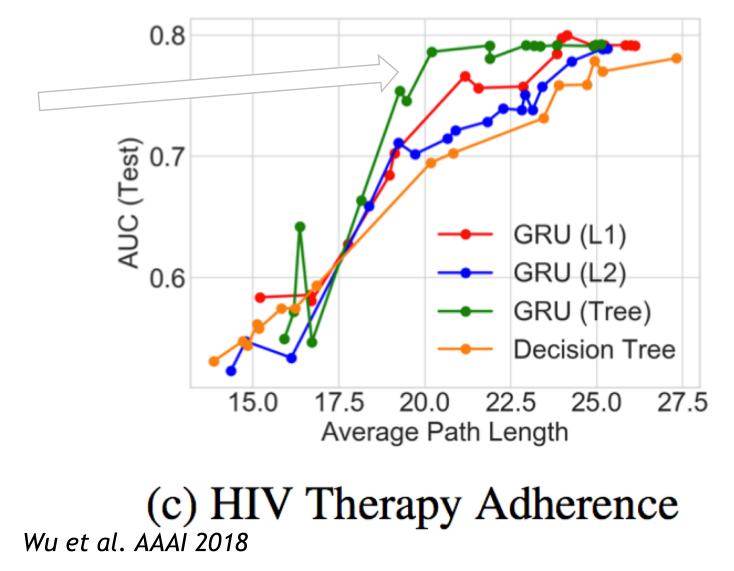
(c) Mechanical Ventilation

Wu et al. AAAI 2018

Tree Proxy for Mech.Vent.



Tree reg. finds sweet spot



Takeaways: Interpretability

Really ask why you need interpretability

Define precise notion:

- Sparse model with few coefficients?
- Human simulatable?

Find precise, domain-specific evaluation

MLHC Challenge 5 Causality

Possible goals of a personalized medicine strategy:

Individual treatment effect Would the patient's symptoms be reduced by drug A?

Average treatment effect Would the average patient benefit if we prescribed drug A?

These "What if?" questions aren't possible with supervised learning

A Provocative Challenge

Theoretical Impediments to Machine Learning With Seven Sparks from the Causal Revolution

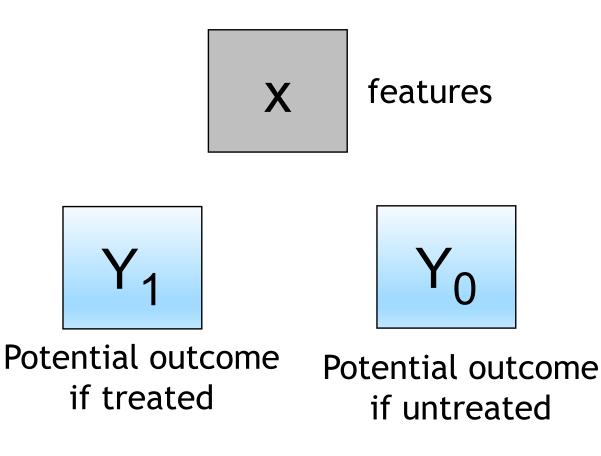
> Judea Pearl University of California, Los Angeles Computer Science Department Los Angeles, CA, 90095-1596, USA judea@cs.ucla.edu

> > July 11, 2018

Big Question: Can we do *anything* with observational data?

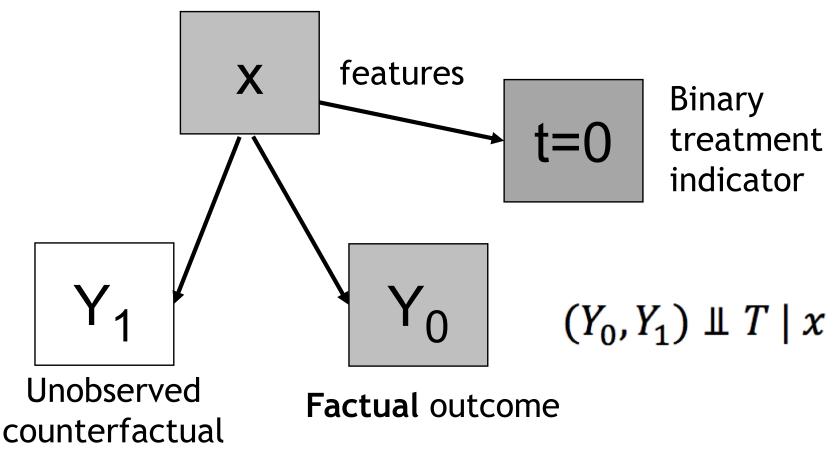
Potential Outcomes Framework

Neyman-Rubin model (Rubin 2011, Neyman 1923)



Potential Outcomes Framework

Neyman-Rubin model (Rubin 2011, Neyman 1923)

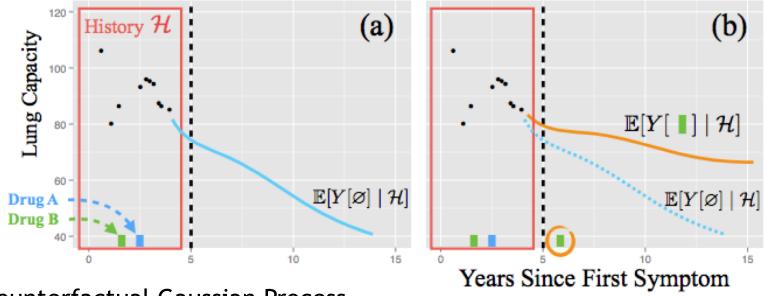


Assumptions for Neyman-Rubin Framework

- •Assumption 1: Common support
 - No set of patient features leads to ZERO probability of treatment (or non-treatment)
- Assumption 2: No unmeasured confounders
 - Also called *conditional ignorability*
 - Treatments and potential outcomes are conditionally independent given features X

These results suggest a number of new questions and directions for future work. First, the validity of the CGP is conditioned upon a set of assumptions (this is true for all counterfactual models). In general, these assumptions are not testable. The reliability of approaches using counterfactual models therefore critically depends on the plausibility of those assumptions in light of domain knowledge.

Paper: Schulam & Saria NIPS 2017



Counterfactual Gaussian Process

Assumes measureable risk score, can be tracked over time

Goal: Model future trajectory of risk score given history

Outcomes are measured and actions are taken at irregular, discrete points in continuous-time

Compare CGP to supervised learning

	Collect da under treatr policy A	nent	Collect data under treatment policy B		
	Regime Baseline GP	A CGP	Regime Baseline GP	B CGP	
AUC	0.853	0.872	0.832	0.872	

Predictions from CGP are same regardless of the policy used to collect data

Baselines are unduly influenced by the observed treatments

Compare CGP to supervised learning

Collect data under treatment policy C which violates assumptions

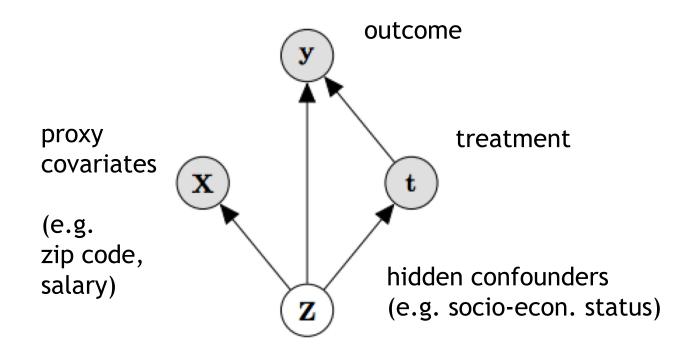
	Regime A		Regime B		Regime C	
	Baseline GP	CGP	Baseline GP	CGP	Baseline GP	CGP
AUC	0.853	0.872	0.832	0.872	0.806	0.829

When assumptions are violated, predictions become unreliable!

Paper:Causal Effect Inference with
Deep Latent-Variable Models

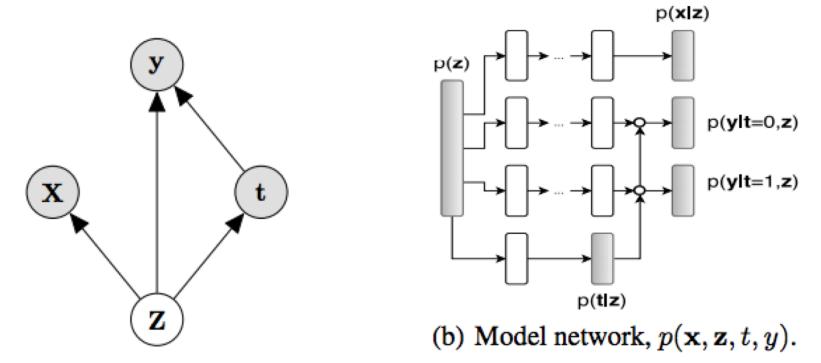
Credit: Louizos et al. NIPS '17

• How to do causal inference when we have imperfect views (proxies) of confounders?



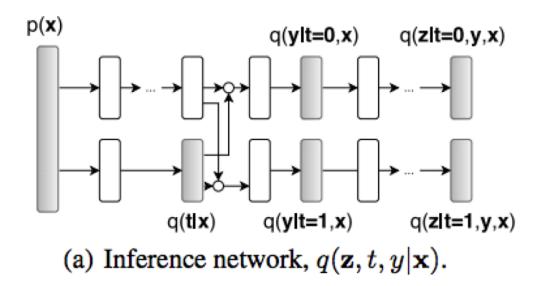
Approach: Model joint p(z, x, t, y)

Credit: Louizos et al. NIPS '17

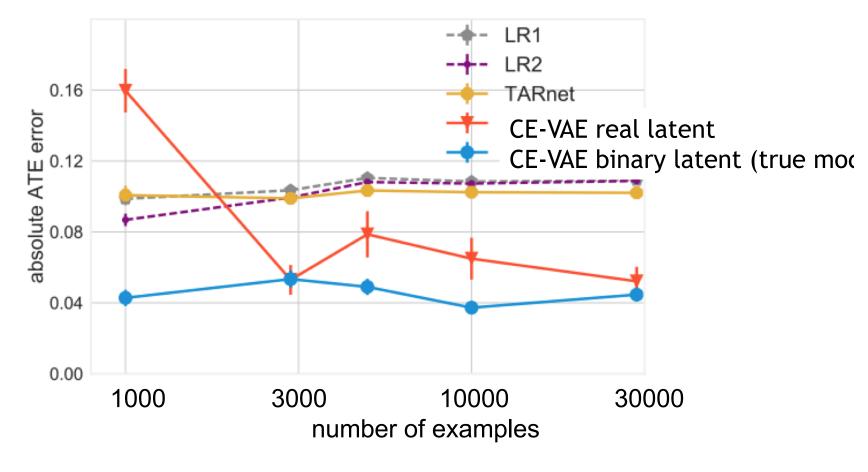


Theorem: if we can estimate the joint, we can estimate causal effects Need flexible model: Use a specialized deep generative model

Causal VAE for fast inference

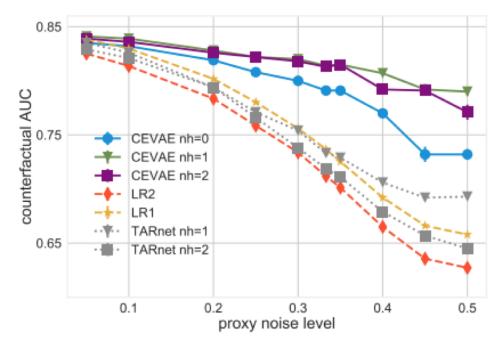


Toy experiments show CE-VAE better at predicting avg. effect than baselines



True even when the latent space is "misspecified"

Experiments on Twin birth data



(a) Area under the curve (AUC) for predicting the mortality of the unobserved twin in a hidden confounding experiment; higher is better.

Takeaways Hard problem!

Assumptions are everything

Try to capture any confounders you can

Multiple views of confounders even better e.g. zip code & salary & job title

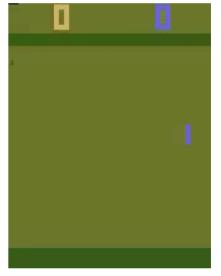
MLHC Challenge 6 Reinforcement Learning

Reinforcement Learning:

Train agent to repeatedly observe state and take action. Goal of high reward after many steps.

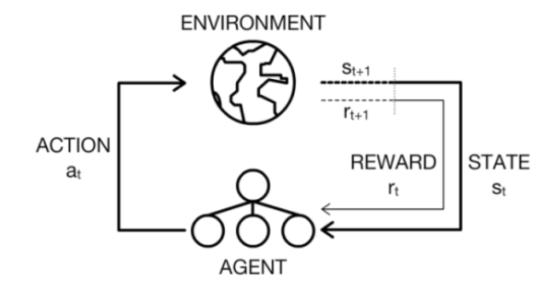
Recent successes:

AlphaGo, Atari



BIG QUESTION Can we use RL for sequential treatment decisions in healthcare?

Taking actions to seek reward



Why is this hard?

- Positive reward may not be easily reached from starting state
- Exploration and exploitation needed

Not safe to explore in healthcare!

Early work in RL for clinical treatment

SIMULATION

- Ernst et al. (2006) : HIV drugs
- Escandell-Montero et al. (2014): Anemia

OBSERVATIONAL DATA

- Nemati et al. (2016):
 - Heparin for Coagulation
- Shortreed et al. (Mach Learn 2011):
 - Schizophrenia: clinical trial to select among 5 drugs
- Prasad et al. UAI 2017:
 - Mech. Ventilator and Sedation, uses MIMIC
- Raghu et al. MLHC 2017:
 - Sepsis treatment with fluids and vasopressors, uses MIMIC

Emerging "Best Practices"

Evaluating Reinforcement Learning Algorithms in Observational Health Settings

Omer Gottesman¹, Fredrik Johansson², Joshua Meier¹, Jack Dent¹, Donghun Lee¹, Srivatsan Srinivasan¹, Linying Zhang³, Yi Ding³, David Wihl¹, Xuefeng Peng¹, Jiayu Yao¹, Isaac Lage¹, Christopher Mosch⁴, Li-wei H. Lehman², Matthieu Komorowski^{5,6}, Aldo Faisal⁷, Leo Anthony Celi^{5,8,9}, David Sontag², and Finale Doshi-Velez¹

Gottesman et al. arXiv 2018

RL for Sepsis

- Observed data
 - Trajectories of 19k patients in ICU (MIMIC-III)
 - All meet the Sepsis-3 Criteria
 - 47 observed features (lab test values, vitals, demog.)
 - Recorded every 4 hours
- Action space (Usual assumptions require discretizing)
 - 5 discrete levels of IV fluids
 - 5 discrete levels of vasopressors
 - No treatment, medians of [0-25, 25-50, 50-7, 75-100] dosage quartiles
- Reward: Mortality

Off Policy Evaluation

Can we compute value (expected reward) of a new target policy A, using trajectories collected under different policy B?

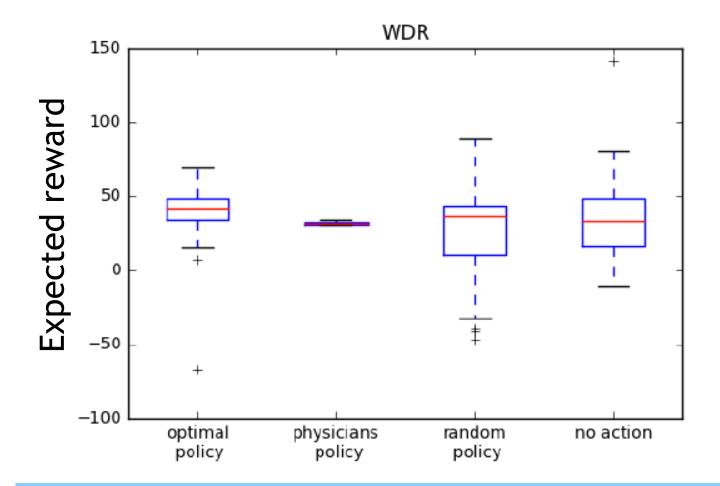
Strategy: weighted average of all rewards

• Upweight patients who had similar trajectories to those suggested by policy A

Many estimators exist. Are they good?

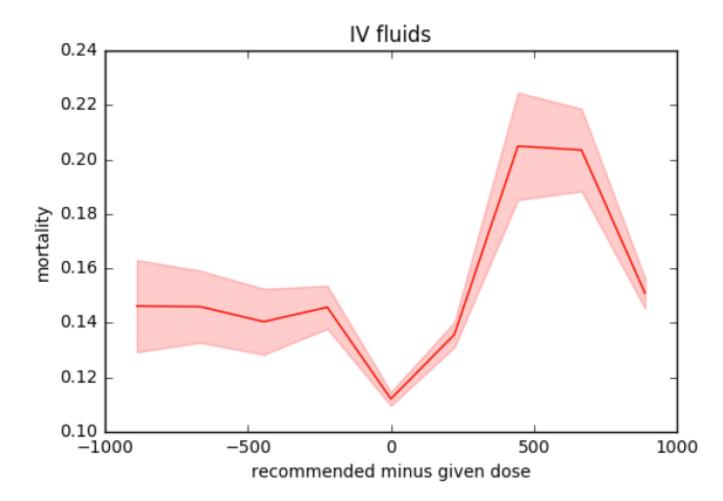
- Precup 2000
- Thomas & Brunskill 2016

Compare RL policy to baselines

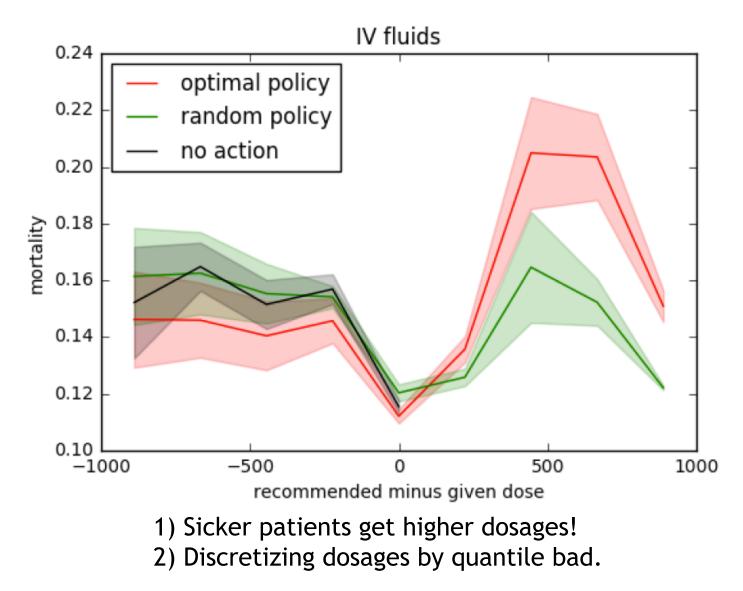


Can't distinguish random policy from no action

U-curve comparisons



U curve with naïve baselines



Takeaways

- Choose good representations and actions
 Err on side of capturing all potential confounders
- Work closely (clinicians & MLers) throughout process, especially when making simplifying assumptions
- With observational data, we can't expect RL to magically find an ideal policy; can maybe mimic the best clinicians at their best moments