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Part 3 outline: Challenges

M : “missing data”

| ”incomplete labels” (semisupervised learning)
M : “multimodal data” (text + images + EHR codes)
| . “interpretability”

C : “causality”

S : “sequential decision making” (reinforcement learning)



MLHC Challenge 1
Missing Data

All supervised prediction methods we’ve
discussed require each example’s
features to be fully observed.

Problem: Medical data often missing,

and almost always not at random

 What are strategies?
« What models/methods are available?



Fraction of patients

Time-of-day for ordering blood
test predicts survival

3 year survival rate

Hour of the day Hour of the day
d

Low value + Ordered 3-6PM: >75% survival rate
Low value + Ordered 3-6AM: <25% survival rate

Need to capture human processes behind decisions to collect data!

Credit: Agniel, Kohane, & Weber
BMJ 2018
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Missingness predicts mortality

Absolute Values of Pearson Correlations between Variable Missing Rates and Labels
(Mortality and ICD-9 Diagonsis Categories on MIMIC-III Dataset)
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Credit: Che et al. 2018 Scientific Reports

131



Imputation Strategies

* Fill with Population Mean

* Forward-carry
* Fill with nearest value from patient’s past

* Model-based

* Discriminative:
* Build predictor that imputes missing values given others
 Build embedding that is amenable to missing input

* Generative
« Draw samples of missing data



Example: impute by predicting

MissForest—non-parametric missing value
imputation for mixed-type data @

Daniel J. Stekhoven &, Peter Bihlmann

Bioinformatics, Volume 28, Issue 1, 1 January 2012, Pages 112-118,
https://doi.org/10.1093/bioinformatics/btr597
Published: 28 October 2011  Article history v

; ; : : RF naturally handles
m multiple data types (real,

categorical*, binary)
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GRU-D (Che et al. 2018)

Use case: ICU time series

Observed features

Binary indicator
1 if missing
Hours since last

observation

Target Predictions:

E.g., Mortality or ICD-9

o

Prediction Layer

+

GRU-D

i

&)

~
br

()
&)

T
T

GRU unit is a
simple
alternative to
LSTM unit

RNN that deliberately handles missingness
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GRU-D: Improvements over
baseline imputation strategies

Non-RNN Models RNN Models
Mortality Prediction On MIMIC-III Datase LSTM-Mean 0.8142+0.014
LR-Mean 0.7589+0.015 RF-Mean 0.8293 + 0.004 GRU-Mean 0.8252+0.011
LR-Forward 0.7792+0.018 RF-Forward 0.8303+0.003 GRU-Forward 0.8192+0.013
LR-Simple 0.7715+0.015 RF-Simple 0.8294 +0.007 GRU-Simple w/o 62 0.8367 +0.009
LR-Softimpute 0.7598 +0.017 RF-Softlmpute 0.7855+0.011 GRU-Simple w/o m*-** 0.8266 + 0.009
LR-KNN 0.6877 +0.011 RF-KNN 0.7135+0.015 GRU-Simple 0.8380+0.008
LR-CubicSpline 0.7270 4+ 0.005 RF-CubicSpline 0.8339+ 0.007 GRU-CubicSpline 0.8180+0.011
LR-MICE 0.6965+0.019 RF-MICE 0.7159+ 0.005 GRU-MICE 0.7527 £0.015
LR-MF 0.7158 +0.018 RF-MF 0.7234+0.011 GRU-MF 0.7843 +0.012
LR-PCA 0.7246 +0.014 RF-PCA 0.7747 £ 0.009 GRU-PCA 0.8236 +0.007
LR-MissForest 0.7279+0.016 RF-MissForest 0.7858 +0.010 GRU-MissForest 0.8239 +0.006
Proposed GRU-D 0.8527 +0.003

Table 1. Model performances measured by AUC score (mean + std) for mortality prediction.

RandForest (RF) very competitive at 0.83.

Credit: Che et al. 2018
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GAIN: Generative Adversarial
Imputation Network

GAIN: Missing Data Imputation using Generative Adversarial Nets

Jinsung Yoon'" James Jordon?® Mihaela van der Schaar '??

T Yoon et al. ICML 2018

Estimated mask matrix

GAN that deliberately represents missingness

Can draw samples!



GAIN: Data Representation

Original data

Data matrix Random matrix Mask matrix

X11| 0 |x13|%X14| O 0 |z 0[]0 |z |21T]O0O(1T]1]0
1 00 O]l1]0]1]1H

100 X2 | 0 |Xpu|Xps| [Z21]| 0 |Z

Xsy| 0 |x33| 0 |xac 0232?2340 1|o0|1]0]1
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GAIN: Generator

Data matrix Random matrix Mask matrix
X117 0 | X313 |X14 0 [z, 0| O |2z 11011
0 X5 | O |Xp4|Xpc| |Z21]| 0 |23 0 | O 011101
Xz | 0 [x33] 0 [x3c| | O |Z32] O [z34( O 110(10
~ G =z
Imputed Matrix/
X11 | X12 | X13 | X14 | X15
1 X21 | X22 | X23 | X24 | X325
X31 | X32 | X33 | X34 | X35
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GAIN: Discriminator

Imputed Matrix/

X11 | X12 | X13 | X14 | X315

1 X21 | X22 | X23 | X24 | X25 Hint Matrix

X31 .7?32 X33 )E34 x35 1 0.5 1 1 0

0|l 1|01 1]05

XID / 1 /011105 1

P11 | P12 | P13 | P14 | P15

, N  probability that each

P21 | P22 | P23 | P24 | P25 value is fake or real

P31 | P32 | P33 | P34 | P35

Discriminator predicts which values are fake (but needs some hints)
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GAIN: Improvements over
Baseline Imputation Strategies

UCI Credit dataset. 690 examples. 15 features (mix of real, cat, binary)

How good are imputations?
(lower = better)

0.18 ‘ '

0 20 40 60 80
(a) Missing Rate (%)

Fig. Credit: Yoon et al. 2018

AUROC
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07
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0.55

How good are predictions
with imputed data?
(higher = better)

e GAIN

= M = Autoencoder
MizsForest
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70 80
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Takeaways: Missing Data

* Know where your data comes from!

* Help your data scientist friends understand what
missing values mean in the clinic.

* Some flexible methods exist; more work is
needed.

* Think about sanity checks for imputed values
from any predictive system.



MLHC Challenge 2
Incomplete Labels

Some examples have associated labels

Many more examples available, but have no labels
Expensive
Time-consuming
Dangerous (give drug to new patient)

Supervised learning can only use labeled set

Semi-supervised learning tries to learn from both!



Possible Approaches

Self-training

* Co-training

* Two stage: Pretrained features + classifier

* Generative models



Self-training
1) Train predictor on labeled set
2) Predict outcomes for unlabeled data

3) Add “high confidence” predictions to
labeled set

4) Return to (1)

Very easy to do with any classifier.
BUT probably a bad approach. Do we trust the predictor?



Co-training

REQUIRES

* Two “views” or modalities
* Image and text

*Each view predicts well on its own
*Each view is “independent” given label

* Add V1’s most confident predictions to V2’s
training set, and vice versa

Very easy to do with any classifier.
BUT probably a bad approach. Do we trust the predictor?



Co-training + Active Sensing

Yu et al. “Bayesian co-training” JMLR 2011

0.67

Features for NSCLC 2-years Survival Prediction

| Feature | Description | View | o 0-66f I
GENDER | 1-Male, 2-Female Ist 3 IIIIEE
WHO WHO performance status Ist S 065 .
FEV1 g)rlc:edcz);%lratory volume Ist % .
GTV Gross tumor volume 2nd " 064 —— Active Sensing M
Rl Pl it

5 10 15 20
Number of acquired (sample, view) pairs in order

0.73 = all labels available
0.62 = AUC when just use “fill with mean”

Can we use predictions from demographic data to guess
which patients we should image?
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Denoising Autoencoder

A Input Layer Unsupervised

@OOOO]‘? Pre-Training

Corrupt Input l

Reconstruction
Cost

Credit: Beaulieu-Jones, Greene, et al. J. Biomed. Informatics 2016
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2-stage Classifier using DA
Features

B Testinput

00000

No Corruption l

OO0
Pre-trained
Weights

Hidden Node- v
based

e ()




2-stage DA: Results on Simulated
Data

Table 2
Mean receiver operating curve area under curve by method under simulation model 1.

Patients DA +RF Random forest Support vector machine
100 0618 0.653 0,504  with RBF kernel
200 0.637 0.610 0.449
500 0677 0.690 0.663
1000 0.774 0.717 0.776
2000 0.755 0.736 0.862
i - Patients: 200 i . ' .
.8 Patients: 100 10 .0 Patients: 1000 10 Patients: 2000
0.8 0.8 0.8 0.8
0.6 0.6 0.6 0.6
0.4 0.4 04 . = 04 . — '
0.2 0.2 0.2 0.2
0.0 0.0 0.0 0.0

RF NN DA (2)SVM RF NN DA (2) SVM RF NN DA (2)SVM RF NN DA (2) SVM
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2-stage DA: Results on ALS Data

The PRO-ACT dataset includes 23 clinical trials covering 10,723
patients. We limit our survival analysis to the 3398 patients with
known death information, but perform unsupervised pre-training
of the DA with all 10,723 patients.

140

120

Mean Avg. Error
(lower is better) w

Raw Input Nenanising Autoencader

Raw Input DA
size 6812 size 256 150



Cool Idea:

Disentangled Semi-supervised VAE

, , Siddharth et al. NIPS 2017
Visual Analogies
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Can model styles of handwriting (lots of unlabeled data).
Transfer those to different labels (using small labeled data).



Reproducibility for SSL?

Realistic Evaluation of Semi-Supervised Learning Algorithms

Avital Oliver " '? Augustus Odena”' Colin Raffel " !
Ekin D. Cubuk ' Ian J. Goodfellow '

CIFAR-10 .

Method Tk Labols Using only 4k labeled
TI-M (Sajjadi et al., 2016b) 11.29% examples, but lots more
I1-M (Laine & Aila, 2017) 12.36% : :
MT (Tarvainen & Valpola, 2017) 12.31% effort on regUlarlzat]On )
VAT (Miyato et al., 2017) 11.36% data augmentation
VAT + EM (Miyato et al., 2017) 10.55%

Results above this line cannot be directly compared to those below 13 . 4%
Supervised 20.26 4+ 0.38%
I1-Model 16.37 4+ 0.63%
Mean Teacher 15.87 4+ 0.28%
VAT 13.86 + 0.27%
VAT + EM 13.13 £+ 0.39%
Pseudo-Label 17.78 £ 0.57%

Results in literature might be overly optimistic.
Careful reproduction shows baselines much stronger than claimed.
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When is SSL the right choice?

Our discoveries also hint towards settings where SSL is
most likely the right choice for practitioners:

e When there are no high-quality labeled datasets from
similar domains to use for fine-tuning.

e When the labeled data is collected by sampling i.i.d. from

the pool of the unlabeled data, rather than coming from a
(slightly) different distribution.

e When the labeled dataset is large enough to accurately
estimate validation accuracy, which is necessary when doing
model selection and tuning hyperparameters.

Credit: Oliver et al. 2018
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Takeaways: Incomplete Labels

*When can you do better with unlabeled data?
* Unlabeled & labeled from same distribution
* Large-enough validation set

* Should you spend months of research effort
on.

* Applying tricks of trade (data augmentation)

* Trying different SSL methods with data you have

* Labeling more data?



MLHC Challenge 3
Multiple Data Sources

Health records contain many types of data:

* images * note text

* genetics « diagnostic codes
* survey response « lab tests

* mobile health * outcomes

Multimodal machine learning
tries to bring these together



Multimodal Machine Learning:
A Survey and Taxonomy

Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency

Abstract—Our experience of the world is multimodal - we see objects, hear sounds, feel texture, smell odors, and taste flavors.
Modality refers to the way in which something happens or is experienced and a research problem is characterized as multimodal when
it includes multiple such modalities. In order for Artificial Intelligence to make progress in understanding the world around us, it needs
to be able to interpret such multimodal signals together. Multimodal machine learning aims to build models that can process and relate
information from multiple modalities. It is a vibrant multi-disciplinary field of increasing importance and with extraordinary potential.
Instead of focusing on specific multimodal applications, this paper surveys the recent advances in multimodal machine learning itself
and presents them in a common taxonomy. We go beyond the typical early and late fusion categorization and identify broader
challenges that are faced by multimodal machine learning, namely: representation, translation, alignment, fusion, and co-learning. This
new taxonomy will enable researchers to better understand the state of the field and identify directions for future research.

Index Terms—Multimodal, machine learning, introductory, survey.

4

https://arxiv.org/pdf/1705.09406.pdf
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https://arxiv.org/pdf/1705.09406.pdf

Multimodal ML: How to Represent?

Joint/Shared Coordinated but Separate
Representation Representation
— —p>
- — & Similarity

In Common Space

159



Multimodal ML: How to predict?

e Early fusion
* concatenate features > feed to standard classifier

* Late fusion
* build separate classifiers > combine with meta classifier



Example Joint Representation

EHR Analysis via Deep Poisson Factor Models

Electronic Health Record Analysis via
Deep Poisson Factor Models

Ricardo Henao R.HENAO@DUKE.EDU
Electrical and Computer Engineering Department

Duke University

Durham, NC 27708, USA

James T. Lu JAMES.LUG@DUKE.EDU
School of Medicine

Electrical and Computer Engineering Department

Duke University

Durham, NC 27708, USA

Joseph E. Lucas JOE@STAT.DUKE.EDU
Electrical and Computer Engineering Department

Duke University

Durham, NC 27708, USA

Jeffrey Ferranti JEFFREY.FERRANTI@DM.DUKE.EDU
School of Medicine

Duke University

Durham, NC 27708, USA

Lawrence Carin LCARINGDUKE.EDU
Electrical and Computer Engineering Department

Duke University

Durham, NC 27708, USA
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DMPFA: a Hierarchical Topic Model

16,756 patients ? ng)

With diabetes complications

(2) >

Can we capture joint [MPFA ) y
structure that leads to / l \
different EHR data? CI) z\?) %) z>?) ? 232

complications ke (PFAC) (PEAGD] (PRAG]

» cardiovascular

disease? O xW O x@ O x®
* meds lab tests  diagnoses/procedures
* (13 total) RXNORM LOINC ICD/CPT
size= 1694 size=4391 size=21,305

253 606 4,222



Joint Representation Leads to
Better Generative Model

treat each concatenate DMPFA
modality to one big shared top-level
separate vector representation

Size Med Lab Code Med Lab Code Med Lab Code

64-32 1.930 76.724 210.690 | 1.930 76.575 208.785 | 1.865 72.919  194.260
9648 1.851 76.736 192.851 | 1.825 76.787 193.782 | 1.788  72.662 176.737
128-64 1.803 76.538 182.803 | 1.759 76.495 182.049 | 1.748 72.415 167.423

64-32-16 | 1.918 76.648 207.932 | 1.911 76.400 209.652 | 1.861 72.773 191.854
96-48-24 | 1.822 76.967 192.530 | 1.816 76.660 192.505 | 1.759 72.531 176.451
128-64-32 | 1.787 76.556 182.365 | 1.764 76.528 180.806 | 1.730 72.364 166.759

Negative heldout likelihood (lower is better)
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Joint Repr. Gives Better Predictions

treat egch concatenate DMPFA
modality to one big shared top-leyel
separate vector representation
Size Med Lab Code All All

6432 0.5924+0.05 0.59440.05 0.745+0.06 | 0.751+0.06 | 0.771£0.07
96-48 0.596+0.04 0.583+0.05 0.727+0.06 | 0.750+0.06 | 0.781+0.06
128-64 | 0.590+0.04 0.59040.05 0.725+0.06 | 0.751+0.06 | 0.779+0.06
64-32-16 | 0.601+0.05 0.594+0.05 0.726+0.05 | 0.742+0.06 | 0.771+0.06
96-48-24 | 0.587+0.04 0.588+0.06 0.735+0.06 | 0.758+0.07 | 0.785+0.07
128-64-32 | 0.590+0.04 0.588+0.05 0.732+0.05 | 0.757+0.06 | 0.784+0.07

Outcome

Acute Myocardial Infarction
Amputation
Cardiac Catheterization
Coronary Artery Disease
Depression
Heart Failure
Kidney Disease

Avg

Neurological Diseases

Obesity

Ophthalmic Disease

Stroke

. AUC across 13 outcomes
(higher is better)

Model trained “discriminatively”

likelihoods for both data and labels

Unstable Angina

Death
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Better Predictions than Baselines

Amputation

ary Artery Disease
Heart Failure
Kidney Disease
Death

Opthalmic
Neurological
Unstable Angina
'ocardial Infarction
Stroke
Depression

ac Catheterization
Obesity

0.852 4
0.731

0.825 1
e 0.824 1
[ s (), 755 |
[r—— 0,719 .
— 0.792 |

0.733
0.748 -

0.5 0.6 0.8

| s UKPDS mm LASSO

DMPFM|

0.9
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Another Joint Repr. Example:
Multimodal learning for Cervical
Cancer Diagnosis

multimodal clinical record
age and PH value

Pap test C—> evaluation of sample cells —— i

screening methods non-image input (13D)

]

input ROI convl  cesess convs 1-26 f_C7 } fc®

227 x 227 |
|
|
|

QK-
------ —.

|

|

|

¢ |

4096 4096, image feature (13D)

Credit: Xu et al. MICCAI 2016
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Joint Representations w/ Time series

Recurrent Attentive and Intensive Model

Xu et al. KDD 2018

5 Irregular clinical events

.
' Lab measurements

Intervention Lab measurements

1
1
:
' 1
' . PO Intake Temperature -
1 A& Temperature i
i " Glucose » '
1 1
oo W OngwSagtion L WM
P —“
wavelonm -
Htan Ram ) ."4.““.'."..‘ R i oo ph Bl el v’ e A R M T waraametuee,
ABP Mean
Pulse
Resp. Rate
SPO2

? Multi-channel physiological data monitored at ICU

W

Y
1
LSTM
* 3
(
Guided
. ‘ P Multi-channel J
Guidance matrix Attention
-
) i —
. > <IN
0 » | In
: Multimodal 'J‘>
O input > - K
R processing :> Channels
: 0l [of[of (o 0| o
N ):>_J U U U U

Recurrent Attentive and Intensive Modeling
(RAIM)

Figure 1: An overview of RAIM on multimodal continuous patient monitoring data.
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Guide by domain knowledge

(Guidance matnx

Top row: binary indicator of when labs ordered
Bottom: binary indicator of when interventions ordered
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[ @ @ .
B e
Ch,

Figure 2: Multi-channel attention in RAIM

Guided
Multi-channel
Attention

At each timestep:
* Which channels matter?
* Which previous times matter?
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RAIM Predictive Performance

Decompensation Length of Stay
AUC-ROC | AUC-PR | Accuracy | Kappa | Accuracy
CNN (ECG) 87.84% 21.56% 88.38% | 0.7681 B2.16%
CNN-RNN 87.45% 23.19% 88.25% | 0.8027 | 85.34%
CNN-AttRNN 88.19% 25.81% 89.28% | 0.8186 | B84.89%
RAIM-0 87.81% 25.56% 88.96% | 0.8125 | 85.84%
RAIM-1 BB.25% 25.61% B8.91% 0.8215 B6.74%
RAIM-2 88.77% 26.85% 90.27% | 0.8217 | 85.21%
RAIM-3 90.18% 27.93% 90.89% | 0.8291 | 86.82%
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Multimodal ML: How to Represent?

Coordinated but
Separate
Representation

R -

ey

o

Similarity
In Common Space



Example Coordinated Embedding

Nearest images
]

-dog + cat =

- cat + dog =

z - plane + bird =
g - man + woman =

Credit: Kiros, Saludinakov, Zemel DLWorkshop@NIPS 2014
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Example Coordinated Embedding

Nearest images

- blue + red =

= blue + yellow =

- yellow + red =

it
J )’\ '
| N - white + red =

K

Credit: Kiros, Saludinakov, Zemel DLWorkshop@NIPS 2014
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Imagine possible health use:

Sp02

- ventilator + fluids = 77

Platelet




Takeaway: Multimodal Representations

*When to use joint/shared repr.?
* When you have many modalities
 Easy to scale: linear with number of modalities
* When you want a generative model

*When to use coordinated-but-separate repr.?
 For two key modalities. More is hard.
* Too many pairs to coordinate!

* Inspecting how modalities are related
 analogies



Takeaway: Multimodal predictions

*When to use early fusion?

* Low-level interactions between modalities useful
* Training data scarce

* When to use late fusion?
 Hard to access all raw modalities
* Low-level interactions between modalities

* When to use end-to-end learned
representation?

e Large training set and validation set available




MLHC Challenge 4
Interpretability

Interpretable machine learning
helps humans understand model predictions

Also called “Explainable Al”



Position Papers

Towards A Rigorous Science of Interpretable Machine Learning

Finale Doshi-Velez® and Been Kim*

The Mythos of Model Interpretability

Zachary C. Lipton '
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Challenges

*What does "interpretability” mean?
* How do | measure it?



Approaches

Use models with understandable internals



SLIM:
Super-sparse Linear Integer Models

N D
1
min ] N Z loss(yn, Z WaTnd) + Z is-non-zero(wg)
n=1 d=1 d

[wl...wD
subject to : wg € {—10,—-9,-8,...0,...8,9,10}

Operational constraints

» SIZE: Use at most 5 features

» SIGN: Obey established relationships for individual features
 LOW FPR: Do not produce too many false positives



SLIM for Sleep Apnea

PREDICT PATIENT HAS OBSTRUCTIVE SLEEP APNEA IF SCORE > 1

1. age = 60 4 points | -ee--s
2. hypertension 4 points | + c-ee--
3. body mass index > 30 2 points | + c--e--
4. body mass index > 40 2 points | + .-..-.
5. female -6 points | + c-o.--
ADD POINTS FROM ROWS 1-5 SCORE | = ...

Fig. 8: SLIM scoring system for sleep apnea screening. This model achieves a 10-CV mean test TPR/FPR of
61.4/20.9%, obeys all operational constraints, and was trained without parameter tuning. It also generalizes
well due to the simplicity of the hypothesis space: here the training TPR/FPR of the final model is 62.0/19.6%.

Credit: Ustun & Rudin Machine Learn. 2016
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SLIM for Sleep Apnea

100% “9— ‘

o
o
a2
\ e
L

60% &/ Elastic Net
/ ® Lasso
® SLIM

True Positive Rate
¥
-
it
-

20% #

/

0% «
0% 20% 40% 60% 80% 100%

False Positive Rate

Credit: Ustun & Rudin Machine Learn. 2016
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Use complicated model, interpret post-hoc



How to interpret a fixed deep model?

Olah et al. 2017
I . Google Brain

Dataset
Examples show
us what neurons
respond to in
practice

Optimization
isolates the
causes of behavior
from mere
correlations. A
neuron may not be
detecting what
you initially
thought.

Baseball—or stripes? Animal faces—or Clouds—or fluffiness?
mixedda, Unit 6 snouts? mixedda, Unit 453
mixed4a, Unit 240 185



LIME: Local fit of linear model

“Why Should | Trust You?”
Explaining the Predictions of Any Classifier

Marco Tulio Ribeiro Sameer Singh Carlos Guestrin
University of Washington University of Washington University of Washington
Seattle, WA 98105, USA Seattle, WA 98105, USA Seattle, WA 98105, USA
marcotcr@cs.uw.edu sameer@cs.uw.edu guestrin@cs.uw.edu
I
. T *'
. + 1 Model may have complex
_I_' ® boundaries, but for specific
- » example the boundary looks
H ® . N locally linear.
| @ o . .
P Local linear fit can be
f . sparse (L1-reg. regression)
/

Credit: Ribeiro et al. KDD 2016
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Sparsity of post-hoc linear model
indicates relevant features

¥

A

(a) Original Image (b) Explaining FElectric guitar (c) Explaining Acoustic guitar  (d) Explaining Labrador

Figure 4: Explaining an image classification prediction made by Google’s Inception neural network. The top
3 classes predicted are “Electric Guitar” (p = 0.32), “Acoustic guitar” (p = 0.24) and “Labrador” (p = 0.21)

Credit: Ribeiro et al. KDD 2016
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Train deep model to get max “interpretability”



Attention mechanisms

Tell you what part of input model “looks at”

NOT the same thing as “why”

=4

— b, | h,
o — —f —_—————————
[ Multi-channel \
| Vo 2t Attention |
| ) - a |
| —
AN A= «f (g7 !
( ; ; =B 1 &y £ B’ )
— Lol e e —
A wr” A ) A e
© o o i
o @ ®cn
[ ) @ @ .
Ch,
Ch,
Figure 2: Multi-channel attention in RAIM
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Interpretability - Simulatability

a model is simulatable if a human can
“take input data together with the parameters of
the model and in reasonable time step through every
calculation required to produce a prediction” -
Lipton 2016

Advantages of simulation
- check each step against expert knowledge
- check predictions at counter-factual inputs
- what if the blood pressure was lower?
- identify dataset biases / causal leakage / etc



Decision Trees are Simulatable

Iz the mimmum svstolic blood

pressure over the initial 24 hour {

period = 917 / /\

.5 High

nsl-.
Y f \
Is smus tachye xardla/
Lo

present”

1 ‘\’

N 4

Low
nsk

Hig
n'sl:

decent predictions, but definitely inferior to modern deep methods
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Beyond Sparsity: Tree Regularization of Deep Models for Interpretability

Mike Wu!, Michael C. Hughes?, Sonali Parbhoo’,

Maurizio Zazzi*, Volker Roth?, and Finale Doshi-Velez?
IStanford University, wumike @cs.stanford.edu
2Harvard University SEAS, mike @michaelchughes.com, finale @seas.harvard.edu
3University of Basel, {sonali.parbhoo,volker.roth } @unibas.ch
“University of Siena, maurizio.zazzi @unisi.it

Wu et al. AAAI 2018

Can we optimize RNNs so that their
decision boundaries are easily
explained by small decision trees?
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Model: Recurrent Neural Net

N
min AU (W) + Z 108S(Yry G (T, W))

n=1



How to measure simulatability of deep models?

1) Train tree to match the predictions of a deep model

2) Count tree’s average path length
= cost of simulating the average input example

. /S count 7.1




Tree Regularization:
Penalize deep model’s (lack of) simulatability

train

Surrogate MLp

2.2

How to train:

+ Model step: given fixed ““™satemrp . K update W via gradient

« Surrogate step: given fixed W, retrain the *"ogate pyp



Tree Regularization:
tree-like decision boundaries for deep models

Tree 0.01
ot 68

\)

Tree 700.0 Tree 9500.0

» L] '...'l ‘0
. ... - .
L. lae

. ..
4 Sy
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Tree-reg. finds sweet spot
high AUC & low path length

0.9
—~0.8
/2]
@
~ 0.7
8 —e— GRU (L1)
<55 —e— GRU (L2)
' . —e— GRU (Tree)
< Decision Tree
0.5

0.0 2.5 5.0 7.5 10.0 12.5
Average Path Length

(c) Mechanical Ventilation
Wu et al. AAAI 2018
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Tree Proxy for Mech.Vent.

Fi02_100 <= 37.006
gini = 0.4987
samples = 32978

value = [14985, 17993|
class = mechvent:OFF

.

Wu et al. AAAI 2018

5
p
value = [187'3 21
class = mechvamo 198
/7




Tree reg. finds sweet spot

0.8

%07 .

(b]

=

& GRU (L1)
<06 —e— GRU (L2)

—e— GRU (Tree)
—e— Decision Tree

15.0 175 20.0 225 250 27.5
Average Path Length

(¢) HIV Therapy Adherence

Wu et al. AAAI 2018
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Takeaways: Interpretability

Really ask why you need interpretability
Define precise notion:

« Sparse model with few coefficients?
 Human simulatable?

Find precise, domain-specific evaluation



MLHC Challenge 5
Causality

Possible goals of a personalized medicine strategy:

Individual treatment effect
Would the patient’s symptoms be reduced by drug A?

Average treatment effect
Would the average patient benefit if we prescribed drug A?

These “What if?” questions aren’t possible with supervised learning



A Provocative Challenge

Theoretical Impediments to Machine Learning
With Seven Sparks from the Causal Revolution

Judea Pearl
University of California, Los Angeles
Computer Science Department
Los Angeles, CA, 90095-1596, USA

judea@cs.ucla.edu

July 11, 2018

Big Question: Can we do anything with observational data?
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Potential Outcomes Framework

Neyman-Rubin model (Rubin 2011, Neyman 1923)

X features

Y Yo

Potential outcome  pgtential outcome
if treated if untreated




Potential Outcomes Framework

Neyman-Rubin model (Rubin 2011,

features

Neyman 1923)

Binary

0

Factual outcome

Unobserved
counterfactual

t=0 | treatment
/ \ indicator
Y, Y

(Yo,Y) LT |x



Assumptions for Neyman-Rubin
Framework

* Assumption 1: Common support

* No set of patient features leads to ZERO probability
of treatment (or non-treatment)

* Assumption 2: No unmeasured confounders
* Also called conditional ignorability

* Treatments and potential outcomes are
conditionally independent given features X

These results suggest a number of new questions and directions for future work. First, the validity
of the CGP is conditioned upon a set of assumptions (this is true for all counterfactual models). In
general, these assumptions are not testable. The reliability of approaches using counterfactual models
therefore critically depends on the plausibility of those assumptions in light of domain knowledge.



Paper: Schulam & Saria NIPS 2017

g [ @) i (b)
é o~ E S E
{..3 . : ., :
g : : E[Y[1]|#]
— : .

E[Y[2] | H] E[Y[2) | ]

. Years Since First Symptom |
Counterfactual Gaussian Process

Assumes measureable risk score, can be tracked over time
Goal: Model future trajectory of risk score given history

Outcomes are measured and actions are taken at irregular, discrete
points in continuous-time



Compare CGP to supervised learning

Collect data Collect data
under treatment under treatment
policy A policy B
Regime A Regime B
Baseline GP CGP | Baseline GP CGP
AUC 0.853 0.872 0.832 0.872

Predictions from CGP are same regardless of the policy used to collect
data

Baselines are unduly influenced by the observed treatments



Compare CGP to supervised learning

Collect data
under treatment
policy C which
violates
assumptions

Regime A Regime B Regime C
Baseline GP CGP | Baseline GP CGP | Baseline GP CGP
AUC 0.853 0.872 0.832 0.872 0.806 0.829

When assumptions are violated, predictions become unreliable!
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. Causal Effect Inference with
Pa Pe I. Deep Latent-Variable Models

Credit: Louizos et al. NIPS ‘17

* How to do causal inference when we have
imperfect views (proxies) of confounders?

outcome

proxy treatment
covariates

(e.g.

Zip code, .

salary) hidden confounders

(e.g. socio-econ. status)



Approach: Model joint p(z, x, t, y)

Credit: Louizos et al. NIPS ‘17
p(xlz)

p(zl|—» > — >
_|—> — p(ylt=0,z)

1y s p(ylt=1,z)
p(tiz)

(b) Model network, p(x, z,t,y).

J |
J |

) —

J |

S—

Theorem: if we can estimate the joint, we can estimate causal effects

Need flexible model: Use a specialized deep generative model
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Causal VAE for fast inference

P(x)

—
—

I

>

q(tix)

—
—

q(ylt=0,x)

>

—

o

.

R

—

—
J—

qlylt=1,x)

q(zlt=0,y,x)

> >

—

q(zlt=1,y,x)

(a) Inference network, q(z, ¢, y|x).

211



Toy experiments show CE-VAE better at
predicting avg. effect than baselines

-4- LR1
-4- LR2
0.16 TARnNet
% —¥—  CE-VAE real latent
w 0.12 ¥~ CE-VAE binary latent (true moc
= NS
9
=0.08
@]
a
©
0.04
0.00

1000 3000 10000 30000
number of examples

True even when the latent space is “misspecified”
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Experiments on Twin birth data

0.85
O
=2
<
50.75 - CEVAE nh=0 ‘o s
S ~¥- CEVAE nh=1 < ¥
= = ;
5 -~ CEVAE nh=2 ,‘
= —4- LR2 N ¥y
3 LR M.
o N
¥+ TARnet nh=1 “\ ..
085 . @. TARnetnh=2 L.
i |
0.1 0.2 0.3 0.4 0.5

proxy noise level

(a) Area under the curve (AUC) for predicting the
mortality of the unobserved twin in a hidden con-
founding experiment; higher is better.
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Takeaways

Hard problem!
Assumptions are everything
Try to capture any confounders you can

Multiple views of confounders even better
e.g. zip code & salary & job title



MLHC Challenge 6
Reinforcement Learning

Reinforcement Learning:
Train agent to repeatedly observe state and take action.

Goal of high reward after many steps.

Recent successes:

AlphaGo, Atari
BIG QUESTION

Can we use RL for

sequential treatment

decisions in healthcare?
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Taking actions to seek reward

ACTION
dt

ENVIRONMENT

REWARD

I
— <

Why is this hard?

* Positive reward may not be easily reached
from starting state

- Exploration and exploitation needed

Not safe to explore in healthcare!

STATE
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Early work in RL for clinical
treatment

SIMULATION
* Ernst et al. (2006) : HIV drugs
 Escandell-Montero et al. (2014): Anemia

OBSERVATIONAL DATA

* Nemati et al. (2016):
« Heparin for Coagulation

* Shortreed et al. (Mach Learn 2011):
 Schizophrenia: clinical trial to select among 5 drugs

* Prasad et al. UAI 2017:
* Mech. Ventilator and Sedation, uses MIMIC

« Raghu et al. MLHC 2017:

* Sepsis treatment with fluids and vasopressors, uses MIMIC



Emerging “Best Practices”

Evaluating Reinforcement Learning Algorithms
in Observational Health Settings

Omer Gottesman!, Fredrik Johansson?, Joshua Meier!, Jack Dent!,
Donghun Lee!, Srivatsan Srinivasan', Linying Zhang®, Yi Ding?, David
Wihl', Xuefeng Peng!, Jiayu Yao', Isaac Lage!, Christopher Mosch*, Li-wei
H. Lehman?, Matthieu Komorowski>®, Aldo Faisal”, Leo Anthony Celi®®?,

David Sontag?, and Finale Doshi-Velez!

Gottesman et al. arXiv 2018
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RL for Sepsis

* Observed data

 Trajectories of 19k patients in ICU (MIMIC-III)
« All meet the Sepsis-3 Criteria
» 47 observed features (lab test values, vitals, demog.)

* Recorded every 4 hours

» Action space (Usual assumptions require discretizing)
* 5 discrete levels of IV fluids

* 5 discrete levels of vasopressors

* No treatment, medians of [0-25, 25-50, 50-7, 75-100] dosage
quartiles

* Reward: Mortality

time 1 2 3 4 ... T-1 T
reward O 0 0 0 0 +/-100



Off Policy Evaluation

Can we compute value (expected reward) of a
new target policy A, using trajectories
collected under different policy B?

Strategy: weighted average of all rewards

» Upweight patients who had similar trajectories
to those suggested by policy A

Many estimators exist. Are they good?

* Precup 2000
e Thomas & Brunskill 2016



Compare RL policy to baselines

WDR
150 T
+
-E 100 |
© o
2 - | H
|
8 50 + | |
L) —_—
Q 1
- + T !
§) 0 | |
8 | -
X E3
Ll -50
+
_100 | | l l
optimal physicians random no action
policy policy policy

Can’t distinguish random policy from no action
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U-curve comparisons

IV fluids
0.24 l

0.22 | -

0.12 | -

0'10 1 1 |
—1000 -500 0 500 1000

recommended minus given dose
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U curve with naive baselines

IV fluids
0.24 , :

— optimal policy
— random policy
— no action

0.22 |

0.20

0.18 |

mortality

0.16

0.14 |

0.12

0.10 1 ]
—-1000 =500 0 500 1000

recommended minus given dose

1) Sicker patients get higher dosages!
2) Discretizing dosages by quantile bad.
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Takeaways

* Choose good representations and actions
 Err on side of capturing all potential confounders

* Work closely (clinicians & MLers) throughout
process, especially when making simplifying
assumptions

* With observational data, we can’t expect RL
to magically find an ideal policy; can maybe
mimic the best clinicians at their best
moments



