

Machine Learning for Clinicians:

Advances for Multi-Modal Health Data

Michael C. Hughes

A Tutorial at MLHC 2018, August 16, 2018

PART 2: Learning Representations for Sequences, Images, EHR, and Text

Learned representations: topic models, CNNs, RNNs Tricks of the trade: Data augmentation, dropout Models that generate data: Deep Generative Models, VAE, GAN

Slides / Resources / Bibliography:

https://michaelchughes.com/mlhc2018_tutorial.html

Part 2: Learning Representations for Sequences, Images, EHR, and Text

How to represent this structured data for prediction/classification?

Part 2 outline

2-stage hand-engineered representations of data

• Bag of words for images, text, EHR codes

Learnable representations of data

- Images
- Time series
- Text
- Tricks of the trade
- Models that generate data

Bag-of-words representation²

Popular 2000-2012

Topic models for clinical bag-of-codes

Explain all data via set of shared clinical "topics"

Each "topic" is a distribution over all 5126 possible billing codewords

How to interpret?

- Might be a **subtype** of target disease (bipolar, postpartum, etc.)
- Might be related conditions

Flexible Patient Representation

Each patient's history is a "mixture" of topics

Topic Model

e.g. Latent Dirichlet Allocation "LDA" (Blei, Ng & Jordan 03)

Predictions from bag-of-words

Will discovered topic features make good predictions?

Why not bag-of-words?

- Tractable, but lose information (order matters)
- •Cool models for low-dim. representations, but hard to integrate into predictive task

What might be better?

- Avoid two stage represent-then-predict
- Learn representations end-to-end
 - one trainable pipeline

Prediction tasks with IMAGES

Image classification

Object detection

Object segmentation

For much more, see survey on Deep Learning for Medical Images: Litjens et al. 2017

Convolutional Neural Networks (CNNs): Trainable features for images

"objects" and "parts"

object could appear anywhere

Credit: L.P. Morency & T. Baltrusaitis, ACL 2017 Tutorial https://www.cs.cmu.edu/~morency/MMML-Tutorial-ACL2017.pdf

Basic 2D Convolution Operation

Slide same "small window" with fixed weights across entire image

Each output value depends on **small subset** of input

Advantages

- Fewer parameters to learn
- Can detect same pattern in any position in the image

Example Convolution in 2D

Credit: L.P. Morency & T. Baltrusaitis, ACL 2017 Tutorial https://www.cs.cmu.edu/~morency/MMML-Tutorial-ACL2017.pdf

Deep CNN Example: AlexNet

Credit: Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." NIPS 2012

Deep CNN Example: ResNet

Credit: Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image recognition", CVPR 2016

Error vs. Depth on the ImageNet benchmark

Credit: KDD Tutorial by Sun, Xiao, & Choi: <u>http://dl4health.org/</u> Figure idea originally from He et. al., CVPR 2016

Prediction tasks for TIME SERIES

Predict one label per sequence

Given vital sign history, predict mortality risk

Predict one label per timestep

Given vital sign history, predict need for ventilator at each hour

Other tasks: "seq2seq", where x has length T and y has length U

Assumptions for Time Series ML

1) Regular time intervals between observations

Generative Paradigm

- Hidden Markov Models
 - Rabiner '89
- State Space Models
 - Kalman '60

2) Irregular intervals?

• EITHER Deliberately model irregularity

Generative Paradigm

- Continuous Time HMMs
 - Leiva-Murillo et al. NIPS '11
 - Liu et al. NIPS '15

Deep Learning Paradigm

• Extensions of RNNs

• OR Align to a regular grid, then goto (1)

Deep Learning Paradigm

- Recurrent Neural Nets (RNNs)
 - LSTM
 - GRU

Assumptions for Time Series ML

1) Regular time intervals between observations

Generative Paradigm

- Hidden Markov Models
 - Rabiner '89
- State Space Models
 - Kalman '60
- 2) Irregular intervals?

• EITHER Deliberately model

Generative Paradigm

- Continuous Time HMMs
 - Leiva-Murillo et al. NIPS '11
 - Liu et al. NIPS '15

Deep Learning Paradigm

- Recurrent Neural Nets (RNNs)
 - LSTM
 - GRU

Focus here on this tutorial

- Easier to integrate with prediction task
- Easier to train end-to-end
- Extensions of RNNs

• OR Align to a regular grid, then goto (1)

Recurrent Neural Networks (RNNs)

Simple RNN unit

Each "A" cell shares *same* weight parameters

LSTM: Captures long-range info.

Settings of f and i exist that could maintain same c for any number of steps t

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

f between 0 and 1

- 0 means "forget old cell value"
- 1 means "keep old cell value"

i between 0 and 1

- 0 means "discard new cell value"
- 1 means "keep new cell value"

Learning to Diagnose with LSTMs (Lipton et al ICLR 2016)

- 10k sequences from the Pediatric ICU
- Durations of 12 hrs to several months
- 13 vital signs (blood pressure, heart rate, etc.)
- Prediction task: label each sequence with 128 separate ICD diagnoses

Each example consists of irregularly sampled multivariate time series with both missing values and, occasionally, missing variables. We resample all time series to an hourly rate, taking the mean measurement within each one hour window.

Performance: LSTM vs baseline

	-	
Model	Micro AUC	Macro AUC
Base Rate	0.7128	0.5
Log. Reg., First 6 + Last 6	0.8122	0.7404
Log. Reg., Expert features	0.8285	0.7644
MLP, First 6 + Last 6	0.8375	0.7770
MLP, Expert features	0.8551	0.8030
LSTM-DO-TR	0.8560	0.8075
Max of LSTM-DO-TR & MLP	0.8643	0.8194

- MLP has 3 layers, layer size = 300
- LSTM has 2 layers, layer size = 128

143 "Expert features": 11 stats for each of 13 vital signs

• mean, min, max, median, slope, etc.

Prediction tasks with TEXT

Predict one label per sentence

Unlike time-series forecasting prediction tasks, can use **bidirectional representations**

Word Embeddings (word2vec)

Goal: map each word in vocabulary to high-dimensional vector

• Preserve semantic meaning in this new vector space

Male-Female

Verb tense

vec(swimming) - vec(swim) + vec(walk) = vec(walking)

Word Embeddings (word2vec)

Goal: map each word in vocabulary to high-dimensional vector

• Preserve semantic meaning in this new vector space

Country-Capital

How to embed?

Embeddings for EHR: "med2vec"

Multi-layer Representation Learning for Medical Concepts KDD 2016

Edward Choi¹, Mohammad Taha Bahadori¹, Elizabeth Searles², Catherine Coffey², Michael Thompson², James Bost², Javier Tejedor-Sojo², Jimeng Sun¹ ¹Georgia Institute of Technology ²Children's Healthcare of Atlanta

Goal: Embed patient visits in way that predicts neighboring visits

Embeddings for EHR: "med2vec"

Credit: Liu & Sun ICML 2017 Tutorial

Embeddings for clinical notes

Radiology report annotation using intelligent word embeddings: Applied to multi-institutional chest CT cohort

Imon Banerjee^{a,*}, Matthew C. Chen^b, Matthew P. Lungren^{b,*,1}, Daniel L. Rubin^{a,b,*,1}

^a Department of Biomedical Data Science, Stanford University, Stanford, CA, United States ^b Department of Radiology, Stanford University, Stanford, CA, United States

Table 2

Clustered explored from IWE space using K-means++.

Words
'carcinoma', 'metastas', 'metastasi', 'mass',
'malign', 'adenocarcinoma', 'lymphoma', 'tumor',
'lymphadenopathi', 'carcinomatosi', 'adenopathi', 'neoplasm',
'cancer', 'lymphomat', 'metastat', 'metastat_diseas',
'ventricl', 'heart', 'pulmonari_arteri', 'atrium', 'ventricular', 'atrial'
'boni', 'lytic', 'vertebr_bodi', 'sclerot', 'skeleton', 'bone',
'lucent', 'spine', 'sclerosi', 'osseous'
'right_lower', 'left_lower', 'left_upper', 'right_upper', 'upper', 'lower'
'pleural_effus', 'bilater_pleural_effus', 'left_pleural_effus', 'effus', 'right_pleura
'hemorrhag', 'layer', 'air', 'pneumoperitoneum', 'space', 'wound',
'hemoperitoneum', 'empyema', 'pneumothorac', 'pneumomediastinum', 'her
'blood', 'abscess', 'hydropneumothorax', 'pneumothorax', 'hemithorax',
'bronchopleur', 'pigtail', 'fluid', 'intraperiton', 'bleed', 'hematoma', 'pocket'
'concern', 'suspici','worrisom'

.....

Bidirectional LSTM

Elderly patient has abnormal ... of cholesterol \vec{h}_{t-1} \vec{h}_t \hat{h}_{t+1} \overline{h}_{t-1} h_{t+1} \tilde{h}_t LSTM LSTM LSTM Forward Backward LSTM LSTM LSTM x_{t} Hidden representation at position t uses information from BOTH left and right contexts

Image Credit: Cui, Ke, and Wang 2018 https://arxiv.org/abs/1801.02143 Bidir LSTM refs:

- Schuster and Paliwal 1997
- Graves & Schmidhuber 2005

Neural Net Parts are Composable Bidirectional LSTM + Convolutions?

Text Classification Improved by Integrating Bidirectional LSTM with Two-dimensional Max Pooling

Peng Zhou¹, Zhenyu Qi¹; Suncong Zheng¹, Jiaming Xu¹, Hongyun Bao¹, Bo Xu^{1,2}

Part 2 outline

2-stage hand-engineered representations of data

• Bag of words for images, text, EHR codes

Learnable representations of data

- Images
- Time series
- Text

Tricks of the trade

Models that generate data

Trick: Early Stopping

What clinically relevant signal should we be using?

Big idea: stop training after your heldout set stops improving

- Avoid overfitting
- Save time / compute resources

Credit: <u>https://deeplearning4j.org/docs/latest/deeplearning4j-nn-early-stopping</u>

Tricks: Data Augmentation

Data Augmentation: Increase effective size of dataset by applying small, random perturbations to features during training.

Choose perturbations which do not change label.

Images

- Flip left-to-right
- Slight rotations or crops
- Recolor or brighten

Text

- Add slight misspellings
- Replace word with similar word

This scheme approximately captures an important property of natural images, namely, that object identity is invariant to changes in the intensity and color of the illumination. This scheme reduces the top-1 error rate by over 1%.

from AlexNet paper (Krizhevsky et al. NIPS 2012)

Data Augmentation for Melanoma Classification

What clinically relevant process should we be using?

INCREASING DEEP LEARNING MELANOMA CLASSIFICATION BY CLASSICAL AND EXPERT KNOWLEDGE BASED IMAGE TRANSFORMS

Cristina Nader Vasconcelos*

Bárbara Nader Vasconcelos

Departamento de Ciência da Computação Instituto de Computação Universidade Federal Fluminense, Brazil Serviço de Dermatologia Hospital Universitário Pedro Ernesto (Hupe) Universidade Estadual do Rio de Janeiro, Brazil

(a) Original (b) Segr

(b) Segmentation (c) Artificial 1

(d) Artificial 2

Fig. 2. Distortion of the original image by lesion axis analysis

Tricks: Dropout

Journal of Machine Learning Research 15 (2014) 1929-1958

Submitted 11/13; Published 6/14

Dropout: A Simple Way to Prevent Neural Networks from Overfitting

Nitish Srivastava Geoffrey Hinton Alex Krizhevsky Ilya Sutskever Ruslan Salakhutdinov

NITISH@CS.TORONTO.EDU HINTON@CS.TORONTO.EDU KRIZ@CS.TORONTO.EDU ILYA@CS.TORONTO.EDU RSALAKHU@CS.TORONTO.EDU

(b) After applying dropout.

Credit: Srivastava et al. JMLR 2014

Sample at train, downweight at test

Figure 2: Left: A unit at training time that is present with probability *p* and is connected to units in the next layer with weights **w**. Right: At test time, the unit is always present and the weights are multiplied by *p*. The output at test time is same as the expected output at training time.

In practice, often set dropout probabilities to 50% for hidden units 20% for input units

Dropout Benefits

Decent gains on many tasks (images, genes, sequences)
over other regularization (L1/L2) and other models

• MNIST images

Method	Test Classification	$\mathbf{error}\ \%$
L2	1.62	
L2 + L1 applied towards the end of training	1.60	
L2 + KL-sparsity	1.55	lower
Max-norm	1.35	is bottom
Dropout + L2	1.25	is better
Dropout + Max-norm	1.05	

Table 9: Comparison of different regularization methods on MNIST.

	\sim			• •	
	[n	$\mathbf{\Omega}^{1}$		CC.
•	UC				
			-		

Code Quality	(bits)
440 463 487 567	higher is better
	Code Quality 440 463 487 567 623

Table 8: Results on the Alternative Splicing Data Set.

Tricks: Label/Target Replication

Lipton et al. 2016: "Learning to Diagnose with LSTMs"

At test time, make one prediction per sequence

At train time, duplicate target label at every timestep

Tricks: Label/Target Replication

Lipton et al. 2016: "Learning to Diagnose with LSTMs"

AUC scores for 128 separate binary diagnostic predictions

Micro AUC Macro AUC

LSTM Models with Dropout (probability 0.5)

LSTM-DO	0.8377	0.7741
LSTM-DO-TR	0.8560	0.8075

Adding TR leads to modest improvements

Part 2 outline

2-stage hand-engineered representations of data

- Bag of words for images, text, EHR codes
- Learnable representations of data
 - Images
 - Time series
 - Text
- Tricks of the trade
- Models that generate data

Autoencoder Neural Networks

Compress but retain information!

- Encode each input feature vector into low-dim. vector
- Decode back into feature vector with little information loss

Use cases: images, text, EHR, etc.

- Use low-dim features for prediction
- Inspect low-dim features for patterns
- Easy storage / fast processing

Goal:

Training: Optimize encoder & decoder weights to minimize reconstruction error

Denoising Autoencoders

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and composing robust features with denoising autoencoders, ICML'08

Goal: Improve robustness by adding noise to data when training

Important: Noise process should match input domain

Training: Optimize encoder & decoder weights to minimize reconstruction error of clean input

Autoencoders for EHR

Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records

Riccardo Miotto^{1,2,3}, Li Li^{1,2,3}, Brian A. Kidd^{1,2,3}, Joel T. Dudley^{1,2,3}

Two stage training:

- Learn autoencoder
- Learn predictor from autoencoder

Time Interval = 1 year (76,214 patients)			
	Area under the ROC curve		
Disease	RawFeat	PCA	DeepPatient
Diabetes mellitus with complications	0.794	0.861	0.907
Cancer of rectum and anus	0.863	0.821	0.887
Cancer of liver and intrahepatic bile duct	0.830	0.867	0.886
Regional enteritis and ulcerative colitis	0.814	0.843	0.870
Congestive heart failure (non- hypertensive)	0.808	0.808	0.865

Raw Patient Dataset

Unsupervised Deep Feature Learning

Raw	:	size	41072
PCA	:	size	100*
DeepPatient	:	size	500

* Best size on validation set(?)

Generative Models

Credit: Johnson et al. NIPS 2016

Generative Models

<u>Classic Generative Models</u>

e.g. Gaussian mixtures & extensions

PRO

- Identify outliers/anomalies
- Estimate uncertainty
- Can use data with missing values

CON

- Bespoke inference (1+ months for algo. for each new model)
- Limited expressivity: using classic distribution building blocks like Gaussians

Deep Generative Models

e.g. "deep" Gaussian mixtures

PRO

- Benefits of classic framework, plus
- Flexible data generation
- Black-box inference

CON

- Is inference good enough?
- Interpretation?

Variational Autoencoders (VAEs)

Goal: train deep generative models

- "AE": Each data example *sampled* from latent space
- "V": Use variational inference to approximate posterior

Big idea: We can learn *distributions* over possible embeddings

- Patient with long history has more certain embedding
- Patient with little history could take many possible values

How to build high-quality generative models?

Training Data (CelebA)

Generative Adversarial Net (GAN)

3.5 Years of Progress on Faces

How do GANs work?

 $\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$

medGAN for Health Data

Generating Multi-label Discrete Patient Records using Generative Adversarial Networks

Edward Choi ¹	MP2893@GATECH.EDU
Siddharth Biswal ¹	SBISWAL7@GATECH.EDU
Bradley Malin ²	BRADLEY.MALIN@VANDERBILT.EDU
Jon Duke ¹	JON.DUKE@GATECH.EDU
Walter F. Stewart ³	STEWARWF@SUTTERHEALTH.ORG
Jimeng Sun ¹	JSUN@CC.GATECH.EDU

¹GEORGIA INSTITUTE OF TECHNOLOGY ² VANDERBILT UNIVERSITY ³ SUTTER HEALTH

Outliers:

* medGAN sometimes generates records with both male and female gender-specific codes

End of Part 2: Best Practice Summary

Do: End-to-end training of representations if your goal is prediction quality

Do: Use clinical knowledge to improve tricks like dropout, early stopping, data augmentation

Do NOT: Blindly trust reproducibility of published methods