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for Clinicians:

Advances for Multi-Modal Health Data

Michael C. Hughes
A Tutorial at MLHC 2018, August 16, 2018

PART 2: .
Learning Representations for

Sequences, Images, EHR, and Text

Learned representations: topic models, CNNs, RNNs

Tricks of the trade: Data augmentation, dropout

Models that generate data: Deep Generative Models, VAE, GAN
Slides / Resources / Bibliography:

https://michaelchughes.com/mlhc2018 tutorial.html
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Part 2: Learning Representations for
Sequences, Images, EHR, and Text

Vital Signs over time

Imaging
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Text from Clinical Notes

“21yo woman who presented with
pain on the left side of her thorax”

How to represent this structured data for
prediction/classification?
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Part 2 outline

2-stage hand-engineered representations of data
« Bag of words for images, text, EHR codes

Learnable representations of data
* Images
* Time series
 Text

*Tricks of the trade
* Models that generate data



Popular

Bag-of-words representation 2002012
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Topic models for clinical bag-of-codes

Explain all data via set of shared clinical “topics”

LLJI...M.}_._ “tobacco use”

mammography screening nicotene dependency
radiotherapy tobacco use disorder
l sthma biopsy chronic airway obstruction
MMminmJJL ultrasound of breast emphysema

M‘ tofﬂcco use
Whoadl a1 L2

W M Ji]l.l uJ.uJ Ldu uL‘ll

Each “topic” is a distribution over all 5126 possible billing codewords

How to interpret?
* Might be a subtype of target disease (bipolar, postpartum, etc.)
* Might be related conditions
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Flexible Patient Representation

Each patient’s history is a “mixture” of topics
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Topic Model

1) Pick number of topics K
2) Train to reconstruct data x

e.g. Latent Dirichlet Allocation
“LDA” (Blei, Ng & Jordan 03)
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Predictions from bag-of-words

INPUT:
~INPUT: Low-dim.
High-dim. codewords patient-topic vector
x y n y

+ more interpretable!

Will discovered topic features make good predictions?



Why not bag-of-words?

* Tractable, but lose information (order matters)

* Cool models for low-dim. representations, but
hard to integrate into predictive task

What might be better?

* Avoid two stage represent-then-predict

Learn representations end-to-end
 one trainable pipeline
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Prediction tasks with IMAGES

*Image classification
*Object detection

*Object segmentation -

For much more, see survey
on Deep Learning for Medical
Images: Litjens et al. 2017
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Convolutional Neural Networks
(CNNs): Trainable features for images

' Goal: learn feature representations that:
Objects . Reprsseljt hlg:’h-leve“l mfor,l:natlon
objects” and “parts
 Invariant to translation
« object could appear anywhere

Edges/blobs

Input pixels

Credit: L.P. Morency & T. Baltrusaitis, ACL 2017 Tutorial
https://www.cs.cmu.edu/~morency/MMML-Tutorial-ACL2017.pdf
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Basic 2D Convolution Operation

output

input

Slide same “small window”
with fixed weights
across entire image

Each output value depends
on small subset of input

Advantages

» Fewer parameters to learn

» Can detect same pattern in
any position in the image
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Example Convolution in 2D

Credit: L.P. Morency & T. Baltrusaitis, ACL 2017 Tutorial
https://www.cs.cmu.edu/~morency/MMML-Tutorial-ACL2017.pdf
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Deep CNN Example: AlexNet
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Credit: Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.

“Imagenet classification with deep convolutional neural networks.”
NIPS 2012
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ResNet

Deep CNN Example
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Error vs. Depth on the
ImageNet benchmark

top 5 classification error (%)

28.2
152 25.8
layers
16.4
6.7 |7—3|
35 22 layers| [19 |ayers
8|Ii¢|=.*rs shallow
1 1
ResNet GoogleNet VGG AlexNet ILSVRC ILSVRC
11 10

Credit: KDD Tutorial by Sun, Xiao, & Choi: http://dl4health.org/
Figure idea originally from He et. al., CVPR 2016
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Prediction tasks for TIME SERIES

Predict one label per sequence

Given vital sign history,
X1 7/ " Xo 7/ " Xz — X1 — " X7 predict mortality risk

— Ny

Predict one label per timestep

Given vital sign history,

— —_— — —
X1 X2 X3 2T ol predict need for
o ————, i ——— ventilator at each hour
Y1 Y2 Y3 Y11 yr

Other tasks: “seq2seq”, where x has length T and y has length U
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Assumptions for Time Series ML

1) Regular time intervals between observations

Generative Paradigm Deep Learning Paradigm

* Hidden Markov Models * Recurrent Neural Nets (RNNs)
* Rabiner ‘89 e LSTM

- State Space Models - GRU
* Kalman ‘60

2) Irregular intervals?
* EITHER Deliberately model irregularity

Generative Paradigm Deep Learning Paradigm

 Continuous Time HMMs * Extensions of RNNs
 Leiva-Murillo et al. NIPS ‘11
e Liuetal. NIPS ‘15

* OR Align to a regular grid, then goto (1)
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Deep Learning Paradigm

« Recurrent Neural Nets (RNNs)

« LSTM
« GRU

Focus here on this tutorial

« Easier to integrate with
prediction task

« Easier to train end-to-end
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Recurrent Neural Networks (RNNs)

h ® C?D

-OK-o— 0
® & - ©

Credit: Chris Olah nttp://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Simple RNN unit
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Each “A” cell shares same weight parameters

Credit: Chris Olah nttp://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short Term Memory unit
(LSTM)

“cell state” —»
vector ¢

“hidden state”
>

vector h
) |

Credit: Chris Olah nttp://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTM: Captures long-range info.

Settings of f and i exist that
could maintain same c for any
number of steps t

Cy = fixCi_1 + 1 x C}

f between 0 and 1
* 0 means “forget old cell value”
* 1 means “keep old cell value”

i between 0 and 1
* 0 means “discard new cell value”
* 1 means “keep new cell value”

Credit: Chris Olah http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Learning to Diagnose with LSTMs
(Lipton et al ICLR 2016)

« 10k sequences from the Pediatric ICU

* Durations of 12 hrs to several months

« 13 vital signs (blood pressure, heart rate, etc.)

* Prediction task: label each sequence with 128 separate ICD diagnoses

Each example consists of irregularly sampled multivariate time series with both missing values and,
occasionally, missing variables. We resample all time series to an hourly rate, taking the mean mea-
surement within each one hour window.
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Performance: LSTM Vs baseline

Model Micro AUC Macro AUC
Base Rate 0.7128 0.5

Log. Reg., First 6 + Last 6 0.8122 0.7404

Log. Reg., Expert features 0.8285 0.7644
MLP, First 6 + Last 6 0.8375 0.7770
MLP, Expert features 0.8551 0.8030
LSTM-DO-TR 0.8560 0.8075

Max of LSTM-DO-TR & MLP 0.8643 0.8194

* MLP has 3 layers, layer size = 300
 LSTM has 2 layers, layer size = 128

143 “Expert features”: 11 stats for each of 13 vital signs
* mean, min, max, median, slope, etc.



Prediction tasks with TEXT

Predict one label per sentence

Patient has abnormal ... of cholesterol
Given sentence,

X1 X2 X3 XT-1 XT predict mortality risk

Predict one label per word

Patient has abnormal ... of cholesterol

Given sentence,
predict which words are

X1 X2 X3 XT-1 XT
WM relevant for a sepsis
diagnosis
Y1 Y2 Y3 Y11 yr

Unlike time-series forecasting prediction tasks,
can use bidirectional representations %



Word Embeddings (word2vec)

Goal: map each word in vocabulary to high-dimensional vector
* Preserve semantic meaning in this new vector space

L ]

nan walked
o O
.. T T wOoman —
King T- .. . O o
b walking
- ¢ gueen
/ M O -
swimming
Male-Female Verb tense

vec(swimming) — vec(swim) + vec(walk) = vec(walking)
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Word Embeddings (word2vec)

Goal: map each word in vocabulary to high-dimensional vector
* Preserve semantic meaning in this new vector space

Italy ‘--§_-~_-§‘-N-§§‘Madrid

Germany —_—

Rome

Berlin

Turkey --~““‘-——~_§~
Ankara

Russia

Moscow

Canada Ottawa
Japan
P Tokyo
Vietnam Hanoi
China Beijing

Country-Capital



S

How to embed?

Goal: learn weights Training

Reward embeddings that predict

7)) .
< g 7.1 nearby words in the sentence.
‘n 9 3.2
=
O o \ 2
E 9 Softmax classifier @ @ @ @ -
O @
(@) =< -4.1 Q.
€3 2
T Q 8
3>
'Cé Hidden layer S
Q
O =
embeddings
2 O® 6:9 Projection layer the cat sits on the Imat
(R %. L ' T —
I context/history h target w,;
fixed vocabulary Credit

typlcal 1 000-1 OOk https://www.tensorflow.org/tutorials/representation/word2vec
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Embeddings for EHR: “med2vec”

Multi-layer Representation Learning for Medical Concepts

KDD 2016

Edward Choi', Mohammad Taha Bahadori!, Elizabeth Searles?, Catherine Coffey?,

Michael Thompson?, James Bost?, Javier Tejedor-Sojo?, Jimeng Sun’
'Georgia Institute of Technology “Children’s Healthcare of Atlanta

Goal: Embed patient visits in way that predicts neighboring visits

2. Sequential relation

Fever Chest X-ray

Pneumonia

1. Co-occurrence Credit: Liu & Sun ICML 2017 Tutorial
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Embeddings for EHR: “med2vec”

® Infectious And Parasitic Diseases
® Neoplasms

Endocrine, Nutritional And Metabolic Diseases, And Immunity Disorders

® Diseases Of The Blood And Blood-Forming Organs
® Mental Disorders

Diseases Of The Nervous System And Sense Organs
Diseases Of The Circulatory System
Diseases Of The Respiratory System

® Diseases Of The Digestive System

® Diseases Of The Genitourinary System

Heart-related
(dysrhythmia, tachycardia, etc.) Eye-related
‘ A (cataract, glaucoma,
Kidney Disease ‘ C - —:-tc—)_-_—'

.- & Hypertension =
1 \ = ° ‘ o Malignant Skin Neoplasms

p e o

™ L4 e ©,
— . bl ..f [ N - o < , /
oo T Sy . - ‘0
°s B g% - i oo
- - - e Py *
LT T

- E P .,. o ®e®

o o" .S o.~ * - o e :
10 o .‘ .. L ) . g:.“ ‘ o L

L ) - & .. '. .

1 - L RN AL B
*ase e :'. ®e “e e \
PN i Ll B BT
odee - e Ear-related (otitis, tinnitus, etc.)
Blood-related \

(Thrombocytopenia, Neutropenia, Anemia) Breast-related (lump, neoplasm, etc.)

Credit: Liu & Sun ICML 2017 Tutorial
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Embeddings for clinical notes

Table 2

Radiology report annotation using intelligent word embeddings: Applied to | M)
multi-institutional chest CT cohort =5

Imon Banerjee™*, Matthew C. Chen”, Matthew P. Lungrenb”"l, Daniel L. Rubin®®*!

* Department of Biomedical Data Science, Stanford University, Stanford, CA, United States
® Department of Radiology, Stanford University, Stanford, CA, United States

Clustered explored from IWE space using K-means+ +.

Clusters Words
Cluster 1: Cancer ‘carcinoma’, ‘metastas’, ‘metastasi’, ‘mass’,
‘malign’, ‘adenocarcinoma’, ‘lymphoma’, ‘tumor’,
‘lymphadenopathi’, ‘carcinomatosi’, ‘adenopathi’, ‘neoplasm’,
‘cancer’, ‘lymphomat’, ‘metastat’, ‘metastat_diseas’,
Cluster 2: Cardiac ‘ventricl’, ‘heart’, ‘pulmonari_arteri’, ‘atrium’, ‘ventricular’, ‘atrial’
Cluster 3: Skeletal ‘boni’, ‘Ilytic’, ‘vertebr_bodi’, ‘sclerot’, ‘skeleton’, ‘bone’,
‘lucent’, ‘spine’, ‘sclerosi’, ‘osseous’
Cluster 4: Location ‘right_lower’, ‘left lower’, ‘left_upper’, ‘right upper’, ‘upper’, ‘lower’
Cluster 5: Effusion ‘pleural_effus’, ‘bilater_pleural effus’, ‘left pleural effus’, ‘effus’, ‘right_pleura
Cluster 6: Hemorrhage/infection in lungs ‘hemorrhag’, ‘layer’, ‘air’, ‘pneumoperitoneum’, ‘space’, ‘wound’,
‘hemoperitoneum’, ‘empyema’, ‘pneumothorac’, ‘pneumomediastinum’, ‘her
‘blood’, ‘abscess’, ‘hydropneumothorax’, ‘pneumothorax’, ‘hemithorax’,
‘bronchopleur’, ‘pigtail’, ‘fluid’, ‘intraperiton’, ‘bleed’, ‘hematoma’, ‘pocket’
Cluster 7: Suspidous ‘concern’, ‘suspici’,"worrisom’

.......
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Bidirectional LSTM

Elderly patient has abnormal ... of cholesterol

D ke

e G e, s | S — R ;
R/ A r A
P hee1/\ hy /\ & hey1/ \ o
/ \he—q L.\ e / \hesr |
\‘- = t > \ >
LST;M .\ ‘ LS'I:M \ LS'I;M #\ Forward
Backward \ : \ ; \ ;
<———\ LSTM <——+———\- LSTM <—~—\- LSTM <~
: \ A : i \.| A P "\ E :
/ \ / \ /
.................. \v/ \lv',t \'/,
Xt-1 Xt Xt+1

Hidden representation at position t uses information
from BOTH left and right contexts

Bidir LSTM refs:

Image Credit: Cui, Ke, and Wang 2018 » Schuster and Paliwal 1997
https://arxiv.org/abs/1801.02143 e Graves & Schmidhuber 2005
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Neural Net Parts are Composable
Bidirectional LSTM + Convolutions?

Text Classification Improved by Integrating Bidirectional LSTM
with Two-dimensional Max Pooling

Peng Zhou'!, Zhenyu Qi'; Suncong Zheng', Jiaming Xu', Hongyun Bao', Bo Xu'?

‘ ) Two-dimensional Two-dimensional | Output
BLSTM Layer Convolution Layer | Max Pooling Layer] Layer
left context  word embedding  right coatext

(000 000 000
G e
000 000 .00
. — | X
000 000 (.000)-. | P
( j Lj _ —k
900 000 000 —
I g
(000 000 .000 P
e
(~000) 000 .

_ / _ /
(o000 000 000
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Part 2 outline

* Tricks of the trade



Trick: Early Stopping

What clinically relevant signal should we be using?

>

Training Set Accuracy

Accuracy

Overfitting

!

Test Set Accuracy Early Stopping

Epoch

Big idea: stop training after your heldout set stops improving
* Avoid overfitting
« Save time / compute resources

>
Epoch

Credit: https://deeplearning4j.org/docs/latest/deeplearning4j-nn-early-stopping
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Tricks: Data Augmentation

Data Augmentation: Increase effective size of
dataset by applying small, random perturbations to
features during training.

Choose perturbations which do not change label.

Images Text
« Flip left-to-right « Add slight misspellings
» Slight rotations or crops » Replace word with similar word

* Recolor or brighten

This scheme approximately captures an important property of natural images,
namely that object identity is invariant to changes in the intensity and color of the illumination. This
scheme reduces the top-1 error rate by over 1%.

from AlexNet paper (Krizhevsky et al. NIPS 2012)



Data Augmentation
for Melanoma Classification

What clinically relevant process should we be using?

INCREASING DEEP LEARNING MELANOMA CLASSIFICATION BY CLASSICAL AND
EXPERT KNOWLEDGE BASED IMAGE TRANSFORMS

Cristina Nader Vasconcelos™ Bdrbara Nader Vasconcelos
Departamento de Ciéncia da Computagado Servigo de Dermatologia
Instituto de Computacio Hospital Universitario Pedro Ernesto (Hupe)
Universidade Federal Fluminense, Brazil Universidade Estadual do Rio de Janeiro, Brazil

F

(]= e

(a) Original (b) Segmentation  (c) Artificial 1 (d) Artificial 2

L

Fig. 2. Distortion of the original image by lesion axis analysis
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Tricks: Dropout

Journal of Machine Learning Research 15 {2014) 1929-1958 Submitted 11/13; Published 6/14

Dropout: A Simple Way to Prevent Neural Networks from

Overfitting
Nitish Srivastava NITISH@CS. TORONTO.EDU
Geoffrey Hinton HINTON@CS. TORONTO.EDU
Alex Krizhevsky KRIZECS. TORONTO.EDU
Ilya Sutskever ILYA@CS. TORONTO.EDU
Ruslan Salakhutdinov RSALAKHU@CS. TORONTO.EDU

a) Standard Neural Net (b) After applying dropout.

Credit: Srivastava et al. JMLR 2014 109



Sample at train, downweight at test

W

Present with Always
probability p present
{a) At training time (b) At test time

Figure 2: Left: A unit at training time that is present with probability p and is connected to units
in the next layer with weights w. Right: At test time, the unit is always present and
the weights are multiplied by p. The output at test time is same as the expected output
at training time.

In practice, often set dropout probabilities to 50% for hidden units
20% for input units

Credit: Srivastava et al. JMLR 2014 110



Dropout Benefits

Decent gains on many tasks (images, genes, sequences)
« over other regularization (L1/L2) and other models

. Method Test Classification error %
*MNIST images L6:
L2 + L1 applied towards the end of training 1.60
L2 4+ KL-sparsity 1.55 lower
Max-norm 1.35 .
Dropout + L2 1.25 is better
Dropout + Max-norm 1.05

Table 9: Comparison of different regularization methods on MNIST.

e Genetics Method Code Quality (bits)
Neural Network (early stopping) (Xiong et al., 2011) 440
Regression, PCA (Xiong et al., 2011) 463 higher
SVM, PCA (Xiong et al., 2011) 487 .
Neural Network with dropout a67 is better
Bayesian Neural Network (Xiong et al., 2011) 623

Table 8: Results on the Alternative Splicing Data Set.

Credit: Srivastava et al. JMLR 2014 111



Tricks: Label/Target Replication

Lipton et al. 2016: “Learning to Diagnose with LSTMs”
At test time, make one prediction per sequence

At train time, duplicate target label at every timestep

ol b Lr

1 N _ (T .
T 3" loss(@®, y®) + (1 — a) - loss(3 ™, y™)
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Tricks: Label/Target Replication

Lipton et al. 2016: “Learning to Diagnose with LSTMs”

AUC scores for 128 separate binary diagnostic predictions

Micro AUC Macro AUC

LSTM Models with Dropout (probability 0.5)

LSTM-DO 0.8377 0.7741
LSTM-DO-TR 0.8560 0.8075

Adding TR leads to modest improvements
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Part 2 outline

* Models that generate data



Autoencoder Neural Networks

Goal: Compress but retain information!

* Encode each input feature vector into low-dim. vector
 Decode back into feature vector with little information loss

Ln “n ZE/

encoder decoder
network network
Usually just Usually just
an MLP an MLP
Use cases: images, text, EHR, etc. Training: Optimize encoder &
» Use low-dim features for prediction decoder weights to minimize

* Inspect low-dim features for patterns reconstruction error
» Easy storage / fast processing



Denoising Autoencoders

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.
Extracting and composing robust features with denoising autoencoders, ICML’ 08

Goal: Improve robustness by adding noise to data when training

encoder decoder

Noise network network

Training: Optimize encoder &
decoder weights to minimize
reconstruction error of clean input

Important: Noise process
should match input domain



Autoencoders for EHR

Deep Patient: An Unsupervised
Representation to Predict the
Future of Patients from the

Electronic Health Records
Riccardo Miotto%%3, Li Li%%3, Brian A. Kidd“?3, JoelT. Dudley’%3

“Masking”

Set 5% random entries to 0

Noise

Raw Patient Dataset

Patients

A

Procedures

U

Unsupervised Deep Feature Learning

Medications  Diagnoses Lab Tests

Clinical Descriptors

Hidden Layers

Two stage training: X XAHA ) - >

 Learn autoencoder

* Learn predictor from autoencoder  C¥AeH ) - >

Time Interval= 1 year (76,214 patients)
AreaundertheROCcurve |  ~/ 7

Disease RawFeat | PCA | DeepPatient
Diabetes mellitus with complications 0.794 0.861 0.907 Raw . size 41072
Cancer of rectum and anus 0.863 0.821 0.887 PCA : size 100*
Cancer of liver and intrahepatic bile duct 0.830 0.867 0.886 DeepPatient : size 500
Regional enteritis and ulcerative colitis 0.814 0.843 0.870
Congestive heart failure (non- 0.808 0.808 0.865 * Best size on validation set(?)
hypertensive)
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Generative Models

Gaussian Mixture
+ Neural Net likelihood

e

Raw Data Gaussian Mixture

z ; 1. \ 8 e,
""'.‘, "'::mﬁ" 7‘ \ 13 "‘-m'*"q S-,. - " .
- * / "..:Q.' . .

‘..':-.'- . . .'?' . .?- \ . .
a4 S '
‘? . ‘!g "ee Y, :}!ﬁ @ s

Credit: Johnson et al. NIPS 2016
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Generative Models

Classic Generative Models

Deep Generative Models

e.g. Gaussian mixtures & extensions

PRO

* |ldentify outliers/anomalies

» Estimate uncertainty

» Can use data with missing values

CON

» Bespoke inference (1+ months for algo.

for each new model)

» Limited expressivity: using classic
distribution building blocks like
Gaussians

e.g. “deep” Gaussian mixtures

PRO

» Benefits of classic framework, plus
» Flexible data generation

» Black-box inference

CON
* Is inference good enough?

* Interpretation?



Variational Autoencoders (VAEs)

Goal: train deep generative models
« “AE”: Each data example sampled from latent space
« “V”: Use variational inference to approximate posterior

p(z|x)

encoder

KLig(zv") | plz|x))

******

encoder decoder
distribution distribution

Credit: David Blei

Big idea: We can learn distributions over possible embeddings
» Patient with long history has more certain embedding
« Patient with little history could take many possible values



How to build high-quality
generative models?

Training Data

(CelebA)



Generative Adversarial Net (GAN)

3.5 Years of Progress on Faces

2014 2015 2016

(Brundage et al, 2018)



How do GANs work?

Two player “game” Ln
Probability in (0,1)
. . . D near 1 “real”
Discriminator: near 0 “fake”

|ldentify if feature vector

comes from training data or not

/
<n L,

Generator: G

Turn low-dim random noise
Into “plausible” data vectors

mgn max V(D,G) = Egnpyu(a) l0g D(x)] + Eznp, () [log(l — D(G(2)))]



medGAN for Health Data

Ask doc:
How
realistic is
the record?

Scale 1-10

Generating Multi-label Discrete Patient Records
using Generative Adversarial Networks
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Real medGAN

gl L Outliers:

* medGAN sometimes generates
records with both male and
female gender-specific codes

- -

-0-0}
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End of Part 2: Best Practice Summary

Do: End-to-end training of representations if
your goal is prediction quality

Do: Use clinical knowledge to improve tricks
like dropout, early stopping, data augmentation

Do NOT: Blindly trust reproducibility of
published methods



