Predicting intervention onset in the ICU with switching state space models

Marzyeh Ghassemi, Mike Wu, Michael C. Hughes, Peter Szolovits, and Finale Doshi-Velez

MIT, Yale University, and Harvard University
Problem: When will ICU patient need *intervention*?

e.g.
- mechanical ventilation
- vasopressor *(blood pressure drug)*
- or fluid transfusion

Early prediction helps:
- prepare patient
- plan staffing
- try less aggressive options early
Possible Approaches

What to predict?

– lots of work on general risk scores
 • mortality, SAPS, APACHE
– less work on actionable interventions

How to represent patient state?

hand-engineered features
continuous-state temporal models
discrete switching-state temporal models

Lehman et al. 2015
Caballero Barajas et al. 2014
Contribution

We show that an **unsupervised** auto-regressive Markov model trained on a **large cohort** of 36,000 patients can improve predictions for **5 interventions** several hours ahead:

- mechanical ventilation
- red blood cell transfusion
- vasopressor
- plasma transfusion
- platelet transfusion
Cohort from MIMIC-III dataset

36,050 patients
recorded at Beth-Israel Deaconess in Boston
between 2001-2012
kept all adults with record within 6-360 hours

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Training Num Positive</th>
<th>Training Num Control</th>
<th>Heldout Num Positive</th>
<th>Heldout Num Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vasopressor</td>
<td>6987</td>
<td>21865</td>
<td>1737</td>
<td>5461</td>
</tr>
<tr>
<td>Red blood cell transfusion</td>
<td>19171</td>
<td>9681</td>
<td>4776</td>
<td>2422</td>
</tr>
<tr>
<td>Fresh frozen plasma transfusion</td>
<td>2759</td>
<td>26093</td>
<td>620</td>
<td>6578</td>
</tr>
<tr>
<td>Platelet transfusion</td>
<td>27818</td>
<td>1034</td>
<td>6944</td>
<td>254</td>
</tr>
<tr>
<td>Mechanical Ventilation</td>
<td>13710</td>
<td>15142</td>
<td>3393</td>
<td>3805</td>
</tr>
</tbody>
</table>

mimic.physionet.org
(Johnson et al. Sci. Data 2016)
Observed data

7 nurse-validated vital signs (hourly)
 heart rate, blood pressure, temp., SpO2, ...

11 lab measurements (much less than hourly)
 hematocrit, lactate, ...

Each channel standardized to mean=0, var=1 with carry-and-hold for missing data.
Switching Autoregressive Model

Latent State

one of K possible values

Observed Vitals

z_t

\ldots

hour t

hour $t+1$

\ldots
Switching Autoregressive Model

Latent State

\[z_t \]

Observed Vitals

\[x_t \]

\[x_t | z_t = k \sim \mathcal{N}(A_k x_{t-1} + \mu_k, \Sigma_k) \]

Autoregressive Gaussian allows modeling trajectories/trends in vitals
Training Phase

Learn model parameters from many patients

variational EM algorithm
Prediction Step 1: Belief features

Infer distribution over hidden states at each timestep

HMM dynamic programming (forward alg.)
Step 2: Classify given features

Binary Intervention (did ventilate at hour t)

Logistic regression (with label-balanced cost function)
Task: predict onset in advance

+2 hrs ahead
Vasopressor prediction: 1 hr ahead

Area-under-ROC

<table>
<thead>
<tr>
<th></th>
<th>s</th>
<th>x</th>
<th>s+x</th>
<th>b</th>
<th>b+s+x</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.66</td>
<td>0.77</td>
<td>0.79</td>
<td>0.66</td>
<td>0.82</td>
</tr>
</tbody>
</table>

- static demographics
- dynamic patient vitals at time t
- SSAM belief vector at time t using 10 states
Vasopressor prediction: 4 hr ahead

Area-under-ROC chart:

- s: 0.66
- x: 0.70
- s+x: 0.74
- b: 0.64
- b+s+x: 0.78
Ventilator: 4 hr ahead
Fresh Frozen Plasma: 4 hr ahead
Interpreting Latent States

Inspect classifier weights across all 10 states

Inspect data associated with belief state 9

increased lactate,
lowered SpO2 and bicarbonate

Conclusion: state 9 seems to capture general physiological decline
Future Directions

Can we optimize generative models for particular downstream tasks without losing (too much) generalization?

Compare to alternative representation learning

auto-encoders
RNNs, LSTMs, etc

Move towards reinforcement learning approach
Predicting intervention onset in the ICU with switching state space models

Marzyeh Ghassemi, Mike Wu, Michael C. Hughes
Peter Szolovits, and Finale Doshi-Velez

Summary

unsupervised auto-regressive Markov model
large cohort of 36,000 patients
improves prediction on 5 interventions several hours ahead

Acknowledgments
MCH supported by Oracle Labs
MG funded by the Intel Science and Technology Center for Big Data
and a National Library of Medicine Biomedical Informatics Research Training grant