
bnpy : Reliable and scalable variational

inference for Bayesian nonparametric models

Michael C. Hughes and Erik B. Sudderth
Department of Computer Science, Brown University, Providence, RI 02912

mhughes@cs.brown.edu, sudderth@cs.brown.edu

Abstract

We introduce bnpy, a new inference engine implemented in Python for
unsupervised learning from millions of examples. Our framework applies to
a large class of parametric and Bayesian nonparametric (BNP) clustering
models that capture sequential, hierarchical, or spatial structure. For BNP
models, we develop memoized variational algorithms that explore adding
or removing clusters to discover compact, interpretable models.
Python code: http://bitbucket.org/michaelchughes/bnpy-dev/

1 Goals

A primary goal in machine learning is to infer interpretable clusters or segmentations from
complex datasets. While the simple mixture model is quite popular, many models go beyond
universal exchangeability to capture spatial, temporal, hierarchical, or relational structure.
Further work has combined these structured models with Bayesian nonparametric (BNP)
priors [1] like the Dirichlet process (DP) to enable learning the number of clusters from
data, rather than fixing this number in advance as parametric models do.

Unfortunately, most implementations are not effective for real-world applications. Both
MCMC sampling-based methods [2] and optimization-based methods [3] show sensitivity to
poor initializations and can remain trapped in local optima even after days of computation.
Practitioners often keep the best of dozens of independent restarts, though this approach is
too expensive for large-scale datasets and often still does not yield satisfactory results.

Our research goal is to provide a scalable and reliable inference framework for a large (but
not universal) family of clustering models, including both BNP and parametric models.
In pursuit of this goal, we are building a Python toolbox called bnpy that can apply
diverse models and algorithms to real-world datasets via compositional modules. To achieve
scalability, we focus our efforts on two modern optimization-based approaches which can
process data one subset (or “batch”) at a time: stochastic variational inference [4] and
memoized variational inference [5]. To achieve reliability, we design birth, merge, and delete
moves that can add or remove clusters for BNP models during a single run of inference,
enabling discovery of a parsimonious set of clusters with good predictive power. As a
secondary goal, we plan in the future to develop Gibbs sampling methods for our framework.

2 Models

Our framework supports a broad class of models unified by the compositional structure
shown in Fig. 1. Every model generates each data token xn by assigning it to a single
cluster indicated by discrete variable zn ∈ {1, 2, . . .K, . . .}. If zn = k, we draw xn from
an exponential family (EF) density with natural parameter φk: p(xn|φk) ∝ exp[s(xn)

Tφk],

1

A

zn

φk

xn

clusters

πzpa(n)

B1

π0

π01

π02 π0K
π0,>K

· · ·

∑
∞

k=1
π0k = 1

cluster probabilities

B2

π0

π1 π2 πJ· · ·

B3

π0

π1 π2 πJ· · ·

C1 tokens

zn0

N

C2

zdn

D
Nd

d

documents
tokens

C3 sequencesN

0 zn1 zn2 znT· · ·

C4

0
· · ·

· · ·

· · ·

· · ·

N trees

zn1

zn2

zn3

zn4

zn5

zn6

zn7

Figure 1: Our compositional view of clustering models. Col. A: Generative model for one data
token xn. Col. B: Possible dependency graphs for cluster probability vectors π: DP (top), HDP
(middle), and dependent DPs (bottom). Col. C: Possible graphs for cluster indicators z.

where s(xn) is a sufficient statistic. This general EF form allows many data types (real,
binary, discrete) but ensures tractable inference. Without the EF assumption, we cannot
summarize large datasets via compact sufficient statistics, which complicates scalability.

The allocation of cluster assignments across a dataset requires two sets of variables: prob-
ability vectors π and indicators z. We have one zn indicator for each data token, and one
or more πj nodes, each a positive vector that sums to unity with an entry for each cluster.
By choosing a fixed graph structure for π and z, we encode structural assumptions into the
model, as shown in Fig. 1. Always, indicator zn is drawn from the distribution over clusters
defined at one πj node. The chosen πj node is assigned by token n’s parent in the z graph:
j = zpa(n). This restricts z to multiple trees, but still allows general π.

Our framework defines a single allocation model by combining fixed graph structures for
π, z from columns B and C. Each model can be either parameteric or nonparametric, based
on the prior distribution of the top-level π0. The pair (B1,C1) yields mixture models [6],
while (B2, C2) gives topic models [7, 8], and (B2, C3) gives hidden Markov models [9]. The
pair (B2, C4) yields hidden Markov trees used for multi-scale image modeling [10, 11] and
text parsing [12, 13]. B3 and C2 could yield a topic model where frequencies vary over time,
as in [14]. This framework also extends to relational block models [15, 16], hierarchical or
sticky sequential models [17, 18], and spatial models for image segmentation [19].

3 Variational Inference

Variational methods frame posterior inference as an optimization problem [3]. The
expectation-maximization (EM) algorithm is a simple example, but BNP models require
sophisticated methods that better manage uncertainty. These methods seek an approxi-
mate density q over hidden variables that is as close as possible in KL divergence to the
true, intractable posterior. Factorization assumptions make q tractable by restricting each
variable in z, π, φ to an EF density controlled by free parameters [3]. The goal of optimiza-
tion is to update these free parameters to maximize an objective L that lower bounds the
evidence: log p(x) ≥ L(. . .). Closed-form iterative update algorithms exist for many cases.

Scalability. Recent stochastic algorithms [4] extend variational inference to large datasets
by processing one small data subset (or “batch”) at a time. These methods optimize a noisy
function whose expectation is the whole-dataset objective L(·). They are sensitive to the
choice of learning rate, which must be carefully tuned for ideal performance. Further, the
noisy objective can complicate decisions about adding or removing clusters in BNP models.

A promising alternative is memoized variational inference [5]. This method extends the
incremental EM algorithm of [20] to BNP models, aggregating EF sufficent statistics across

2

HDP memoMD

DP memoMD

DP memoBM

50 100

num topics K

2.4

2.5

2.6

2.7

h
e
ld

o
u
t

lo
g
 l
ik

0.06 0.05 0.050.04 0.20 0.12 0.11 0.07

DP HDP

Gibbs

stochSM rand

memo rand

memoMD rand

memoMD spec

memoMD fromGibbs

50 100 150 200 250 300

num topics K

−7.9

−7.8

−7.7

h
e
ld

o
u
t

lo
g
 l
ik

1
2

 series
 song

 release
 star

 television
 york

 award

 friend

 film
 magazine

 direct
 production

 actor
 career

 hollywood

 appeared

 language
 latin

 letter
 dialect

 speak
 speaker

 sound

 verb

 linguistic
 linguist

 language
 speech

 linguistics
 grammatical

 pronunciation

 suffix

1 Accepted Merge

2 Accepted Merge

Figure 2: Left: Image patches - Heldout performance vs. K for runs with 50 (dashed) and 100
(solid) initial clusters, plus sample patches from final DP and HDP top-ranked clusters when applied
to snake test image. Right: Wikipedia articles - Heldout performance vs. K for HDP algorithms
with 100 (dashed) and 200 (solid) initial topics, plus two topic pairs accepted by our merge moves.

batch-by-batch updates to exactly optimize the whole-dataset objective. Memoized infer-
ence has the same run-time complexity as stochastic, but avoids learning rates entirely.

Reliability via merge, delete, and birth moves. Discovering a compact set of clus-
ters benefits interpretability and improves algorithm speed. We use two non-local proposals
that remove clusters: pair-wise merges eliminate redundancy and deletes remove unnec-
essary clusters. Given a candidate proposal, we evaluate L(·) and accept if it improves.
Memoization allows rapid construction and verification even for large datasets.

Escaping poor initialization requires adding useful clusters missing from the current model.
We developed data-informed birth moves that can add many clusters at once, even if no single
batch alone contains enough evidence for the cluster. When deployed for DP mixtures [5],
these moves enable models started with one cluster to quickly reach hundreds if necessary.

Some previous efforts [21] employ similar non-local moves, but ours apply to a wider class
of models and can scale to large datasets. Our memoized approach is crucial for this goal.
Fig. 2 shows the poor performance of a stochastic split-and-merge method [22], likely caused
by making decisions based on a noisy single-batch (not whole-dataset) objective.

4 Implementation and Results

We have prototyped our framework in an open-source Python package called bnpy. To run
inference on a new dataset, we specify via pre-defined keywords an allocation model, data-
generation method, and algorithm (with optional moves). We plan to move beyond keywords
like “DPMix” for π, z pairs toward a general-purpose specification language. Command A
below trains a DP-mixtures-of-Gaussians model on 3.5 million image patches, while B trains
an HDP admixture on the same data. C trains an HDP topic model on Wikipedia articles.

A: run (' ImgPatch ' , 'DPMix ' , 'Gauss ' , 'memo ' , moves= ' birth , merge ')
B: run (' ImgPatch ' , 'HDPAdmix ' , 'Gauss ' , 'memo ' , moves= 'merge , d e l e t e ')
C: run ('Wiki ' , 'HDPAdmix ' , 'Multinomial ' , ' s t o c h a s t i c ')

Fig. 2 compares bnpy and competitor methods on these two applications. Trace plots show
births (B), merges (M), and deletes (D) making big changes in the number of clusters while
improving predictions on heldout data. In our HDP topic model comparison, neither Gibbs
samplers [8] nor stochastic split-merge methods [22] make such productive changes. We
have also verified our topic modeling algorithms on 1.8 million NY Times articles.

5 Conclusion

Via a modular approach to models and algorithms, bnpy empowers practioners to explore
huge datasets without writing custom inference code. Our memoized variational approach
scales like stochastic methods but offers more principled verification for moves that escape
poor initializations to discover interpretable, compact structure.

3

References

[1] Peter Orbanz and Yee Whye Teh. Bayesian nonparametric models. In Encyclopedia of Machine
Learning, pages 81–89. Springer, 2010.

[2] Christophe Andrieu, Nando De Freitas, Arnaud Doucet, and Michael I Jordan. An introduction
to mcmc for machine learning. Machine Learning, 50(1-2):5–43, 2003.

[3] Martin J Wainwright and Michael I Jordan. Graphical models, exponential families, and
variational inference. Foundations and Trends® in Machine Learning, 1(1-2):1–305, 2008.

[4] Matt Hoffman, David Blei, Chong Wang, and John Paisley. Stochastic variational inference.
Journal of Machine Learning Research, 14(1), 2012.

[5] Michael C. Hughes and Erik B. Sudderth. Memoized online variational inference for dirichlet
process mixture models. In Neural Information Processing Systems, 2013.

[6] David M Blei and Michael I Jordan. Variational inference for dirichlet process mixtures.
Bayesian Analysis, 1(1):121–143, 2006.

[7] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet allocation. Journal of
Machine Learning Research, 3:993–1022, 2003.

[8] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical Dirichlet processes. Journal
of the American Statistical Association, 101(476):1566–1581, 2006.

[9] Matthew J Beal, Zoubin Ghahramani, and Carl E Rasmussen. The infinite hidden markov
model. In Neural Information Processing Systems, 2001.

[10] Matthew S Crouse, Robert D Nowak, and Richard G Baraniuk. Wavelet-based statistical signal
processing using hidden markov models. IEEE Transactions on Signal Processing, 46(4):886–
902, 1998.

[11] Jyri J Kivinen, Erik B Sudderth, and Michael I Jordan. Learning multiscale representations
of natural scenes using dirichlet processes. In International Conference on Computer Vision,
2007.

[12] J. R. Finkel, T. Grenager, and C. D. Manning. The infinite tree. In Proc. of the Annual
Meeting of the Association for Computational Linguistics, 2007.

[13] Percy Liang, Slav Petrov, Michael I Jordan, and Dan Klein. The infinite pcfg using hierarchical
dirichlet processes. In Empirical Methods in Natural Language Processing, 2007.

[14] David M Blei and John D Lafferty. Dynamic topic models. In International Conference on
Machine Learning, pages 113–120, 2006.

[15] Edoardo M Airoldi, David M Blei, Stephen E Fienberg, and Eric P Xing. Mixed membership
stochastic blockmodels. In Neural Information Processing Systems, 2009.

[16] Charles Kemp, Joshua B Tenenbaum, Thomas L Griffiths, Takeshi Yamada, and Naonori
Ueda. Learning systems of concepts with an infinite relational model. In AAAI Conference on
Artificial Intelligence, 2006.

[17] Emily B Fox, Erik B Sudderth, Michael I Jordan, Alan S Willsky, et al. A sticky hdp-hmm
with application to speaker diarization. Annals of Applied Statistics, 5(2A):1020–1056, 2011.

[18] Katherine A Heller, Yee W Teh, and Dilan Görür. Infinite hierarchical hidden markov models.
In Artificial Intelligence and Statistics, 2009.

[19] Erik B Sudderth and Michael I Jordan. Shared segmentation of natural scenes using dependent
pitman-yor processes. In Neural Information Processing Systems, 2009.

[20] Radford M Neal and Geoffrey E Hinton. A view of the EM algorithm that justifies incremental,
sparse, and other variants. In Learning in graphical models, pages 355–368. Springer, 1998.

[21] Naonori Ueda, Ryohei Nakano, Zoubin Ghahramani, and Geoffrey E Hinton. Smem algorithm
for mixture models. Neural Computation, 12(9):2109–2128, 2000.

[22] Michael Bryant and Erik B. Sudderth. Truly nonparametric online variational inference for
hierarchical Dirichlet processes. In Neural Information Processing Systems, 2012.

4

